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A B S T R A C T

Leprosy is a skin disease and it is characterized by a disorder of the peripheral nervous system which occurs
due to the infection of Schwann cells. In this research article, we have formulated a four-dimensional ODE-
based mathematical model which consists of the densities of healthy Schwann cells, infected Schwann cells,
M. leprae bacteria, and the concentration of multidrug therapy (MDT). This work primarily aims on exploring
the dynamical changes and interrelations of the system cell populations during the disease progression. Also,
evaluating a critical value of the drug efficacy rate of MDT remains our key focus in this article so that a safe
drug dose regimen for leprosy can be framed more effectively and realistically. We have examined the stability
scenario of different equilibria and the occurrence of Hopf-bifurcation for the densities of our system cell
populations with respect to the drug efficacy rate of MDT to gain insight on the precise impact of the efficiency
rate on both the infected Schwann cell and the bacterial populations. Also, a necessary transversality condition
for the occurrence of the bifurcation has been established. Our analytical and numerical investigations in this
research work precisely explores that the process of demyelination, nerve regeneration, and infection of the
healthy Schwann cells are the three most crucial factors in the leprosy pathogenesis and to control the M.
leprae-induced infection of Schwann cells successfully, a more flexible version of MDT regime with efficacy
rate varying in the range 𝜂 ∈ (0.025, 0.059) for 100 − 120 days in PB cases and 300 days in MB cases obtained
in this research article should be applied. All of our analytical outcomes have been verified through numerical
simulations and compared with some existing clinical findings.
1. Introduction

Among all non-traumatic peripheral neuropathies worldwide, lep-
rosy is the most complicated and poorly understood disease which is
caused by a bacterium called Mycobacterium leprae (M. leprae). Cur-
rently, more than three million people are suffering from the severe
neurological disabilities caused due to leprosy (Ng et al., 2000). It is
very concerning to the epidemiologists that the new case detection rate
and disease prevalence of leprosy remains extremely high especially in
the developing countries and it is expected that leprosy is not going to
disappear anytime soon in spite of the introduction of MDT (multidrug
therapy) (Lockwood and Suneetha, 2005; Meima et al., 2004). Also,
the chronic mycobacterial infection and the associated immunologic
events during the disease progression have often severe long-term
physical, social, and psychological impacts (Scollard et al., 2006). In
depth analytical investigation needs to be performed to unfold the
complexities of the disease and strict preventive measures should be
taken to eradicate leprosy from mankind. The primary entry route

∗ Corresponding author.
E-mail address: pritiju@gmail.com (P.K. Roy).

of M. leprae into the human body is the upper respiratory tract and
transmission occurs through nasal mucosa and droplets from infected
persons. Skin sores, lump, loss of feeling in hands and legs are some
basic symptoms of leprosy which is caused due to the peripheral
nerve damage during the course of infection. Also Leprosy may lead
to blindness and harm the thin linings within the nose (White and
Franco-Paredes, 2015). M. leprae exhibits specific molecular attraction
to the Schwann cells of the axons of the peripheral nervous system
via some receptors namely laminin-2 and alpha-dystroglycan com-
plex (Rambukkana, 2001). The dedifferentiation of Schwann cells into
immature cells caused by M. leprae provides not only a natural host but
a safe and ideal habitat for the bacteria to proliferate and eventually,
it leads to generating stem-cell like cells which spread the infection
using its cellular plasticity property (Masaki et al., 2013; Rambukkana,
2010). The host immune responses to M. leprae produce natural clinical
manifestations which subsequently leads to acute peripheral nerve
damage (Wilder-Smith and Van Brakel, 2008). Specific 𝑇 cells realize
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the presence of intracellular M. leprae after some time and it induces
severe chronic inflammatory immunological reactions. This process
results in swelling within the perineurium and further nerve damage
with axonal death (Britton, 1998).

Before 1982, the only available treatment for leprosy was dapsone
monotherapy but drug resistance to dapsone was observed in a large
number of patients suffering from leprosy. So, multidrug therapy (MDT)
was implemented according to the recommendation of World Health
Organization in 1982 (Walker and Lockwood, 2006). The components
of MDT are dapsone, rifampicin and clofazimine. Among these, dapsone
has a bacteriostatic effect and rifampicin has a bactericidal effect on
M. leprae while clofazimine mainly acts as an anti-inflammatory drug
(Fischer, 2017). High concentrations of pro-inflammatory cytokines are
observed in skin lesions of some patients treated with steroids even
after 6 months of treatment. In a recent study with different amount
of initial doses and different drug therapeutic schedules for leprosy,
it is suggested that the rate at which infected nerve regenerates is
nearly about 60% to 70% and the recovery rate relatively slow for
patients with chronic and recurrent nerve impairment (WJ, 2004).
Also, the results from clinical trials conducted in 2012 indicates that
bacteriological index (BI) are observed to be decreased significantly
over time in patients taking U-MDT compared to the regular MDT
therapy but the relapse rates for U-MDT regimen are still a matter of
concern for the clinical scientists (Kroger et al., 2008; Penna et al.,
2014).

There are some previous works on various infectious diseases such
as HIV which dealt with the infection of healthy cells, stable production
of virus (Ikeda et al., 2003) and the key relationships in between
the disease prevalence or infection rate, drug-efficacy and dosing reg-
imen of the prescribed combined or single drug therapy into a human
body (Smith and Wahl, 2005; Saha et al., 2018; Cao et al., 2019).
On the disease leprosy, some mathematicians have established human
population based compartmental mathematical models where investi-
gation are performed on the transmission of infections and prevalence
of leprosy into different community, age-group of people of different
regions. Recently, Ghosh et al. (2021) developed and investigated a
cell-dynamical mathematical model on leprosy where basic infection
mechanism of healthy Schwann cells and intracellular proliferation of
M. leprae were focused primarily for finding a safe and cost-effective
optimal control strategy. But, no cell dynamical mathematical model
has been constituted yet which incorporates the efficacy of MDT drug
therapy and its interplay with the bacterial growth, progression of
infection and most importantly, the mechanism of healthy cells being
infected again due to fading effect of MDT, nerve impairment and the
demyelination process in leprosy. As far as finding a perfect drug dose
regimen for both paucibacillary (PB) and multibacillary (MB) leprosy
is our foremost goal, in depth investigation of the drug efficacy of the
existing MDT therapy and its correlations with various pathogenetic
components of leprosy must be given major importance to eradicate
the disease permanently from mankind.

In this research article, we have proposed a four dimensional non-
linear ODE based mathematical model to investigate the cell-dynamical
interactions of healthy Schwann cells, infected Schwann cells, M. leprae
acteria and their internal relations with the drug efficiency of MDT
sed to treat leprosy. Boundedness and positive invariance for our
ystem have been studied in this paper by finding an invariant region
hile different equilibria of the system are discussed extensively to
chieve significant conditions that present an overall description of
he stability situation of our system. We have also provided a detailed
nalysis of the appearance of Hopf-bifurcation for our system and as a
onsequence of this, a critical value of the bifurcation parameter has
een evaluated. Throughout the article, our main objective remains to
xplore the variety of neurological manifestations and pathophysiology
f nerve damage in leprosy which enables us to predict the perfect
rug dose regimen for the treatment of the nerve-function impairment.
2

lso, we have studied the precise effects of multidrug therapy on the
system cell populations. In particular, we have investigated how MDT
treatment regulates the recovery of infected cells and the infection
process of the healthy cells due to the waning effect of MDT and
established that it is actually the drug efficacy rate of MDT which
plays a significant dominant role in the pathogenesis and treatment of
leprosy. All the analytical outcomes obtained in this article have been
verified through numerical simulations. Based on the clinical, histo-
logical and immunological differences, Ridley–Jopling classification of
leprosy provides a complete spectrum of five main categories i.e. TT,
BT, BB, BL and LL (Ridley and Jopling, 1966). Ridley’s bacterial index
(BI) with BI ≥ 2 (skin lesions > 5) forms the multibacillary group
(MB) consisting of BB, BL and LL patients while BT and TT leprosy
patients are categorized as paucibacillary group (PB) (Parkash, 2009).
In real life scenario, clinical correlations of our research findings with
U-MDT regimen, Ridley–Jopling classification and WHO recommended
guidelines for leprosy are discussed in detail.

This manuscript is organized as follows. In Section 2, the mathemat-
ical model formulation along with the suitable assumptions has been
described. Some basic model properties such as the existence conditions
and stability criteria of different equilibria for our formulated model
have been derived in Section 3. Moreover, Section 4 is solely dedicated
for the investigation of the appearance of Hopf-bifurcation for our
system. In Section 5, we have illustrated numerical simulations of our
system in different aspects to validate and justify the findings achieved
in the previous sections. Finally, in Section 6, we have discussed the
novelty of our model, obtained results, conclusions and predictions
about the futuristic works on leprosy.

2. Formulation of the mathematical model

Following assumptions are made for the formulation of desired
mathematical model:

• The concentrations of healthy Schwann cells, infected Schwann
cells, M. leprae bacteria and MDT drug therapy are represented
by 𝑆ℎ(𝑡), 𝑆𝑖(𝑡), 𝐵(𝑡) and 𝑋(𝑡) respectively, at any time 𝑡.

• 𝛱 denotes the constant production rate of healthy Schwann cells
from neural crest cells into human body. 𝛽 is the effective contact
rate between the healthy Schwann cells and the bacteria. 𝛼 be the
rate at which infected cells become recovered due to the effect of
MDT. The rate at which healthy Schwann cells are getting infected
again as a result of waning effect of MDT is indicated by 𝜆.

• The parameters, 𝑟 and 𝐾 describe the intrinsic growth rate and
carrying capacity of M. leprae bacteria as presented in a logistic
manner.

• The level of treatment i.e. the concentration of MDT is pro-
portional to the number of infected Schwann cells and it is
represented by the term, 𝑒𝜂𝑆𝑖, where 𝑒 denotes the proportionality
constant and 𝜂 denotes the efficacy rate of MDT. Moreover, 𝜃 re-
flects the natural drug washout rate through various physiological
processes into a human body.

• 𝑑, 𝑑𝑖 and 𝑑𝑏 signify the natural death rate or mortality rate healthy
Schwann cells, infected Schwann cells and the rate at which M.
leprae bacteria is killed by MDT, respectively.

• The effective drug-treatments is directed by the increasing func-
tion, 𝑓 (𝑋) with 𝑓 (0) = 0 and sup 𝑓 (𝑋) = 1. It is considered that
the effectiveness of drug is fading for which the healthy Schwann
cells are becoming infected again. Therefore, 𝑔(𝑋) is chosen as a
decreasing function of 𝑋 with 𝑔(0) = 1 and inf 𝑔(𝑋) = 0.

Based on the above assumptions, we have the following math-
matical model which depict the various interactions between the
ompartments:
𝑑𝑆ℎ
𝑑𝑡

= 𝛱 − 𝛽𝑆ℎ𝐵 + 𝛼𝑓 (𝑋)𝑆𝑖 − 𝜆𝑔(𝑋)𝑆ℎ − 𝑑𝑆ℎ,

𝑑𝑆𝑖 = 𝛽𝑆 𝐵 − 𝛼𝑓 (𝑋)𝑆 + 𝜆𝑔(𝑋)𝑆 − 𝑑 𝑆 ,

𝑑𝑡 ℎ 𝑖 ℎ 𝑖 𝑖
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Fig. 1. Schematic diagram of the interactions of the cell populations for system (1).
𝑑𝐵
𝑑𝑡

= 𝑟𝐵
(

1 − 𝐵
𝐾

)

− 𝑑𝑏𝑋𝐵, (1)
𝑑𝑋
𝑑𝑡

= 𝑒𝜂𝑆𝑖 − 𝜃𝑋

with initial values 𝑆ℎ(0) = 𝑆ℎ0 > 0, 𝑆𝑖(0) = 𝑆𝑖0 > 0 and 𝐵(0) = 𝐵0 > 0
and 𝑋(0) = 𝑋0 > 0 at 𝑡 = 0 (see Fig. 1).

3. Model properties

3.1. Non-negative invariance and boundedness

In this subsection, we discuss the non-negativity of the solutions and
boundedness of our proposed mathematical model to prove that the
system (1) is biologically well-posed and plausible. We now present the
following theorem which ensures the non-negativity of the solutions of
system (1).

Theorem 3.1. All the solutions of the system (1) along with the initial
conditions are non-negative for all 𝑡 > 0.

Proof. To prove the theorem, let us first assume that 𝑦1(𝑡) = 𝑆ℎ(𝑡),
𝑦2(𝑡) = 𝑆𝑖(𝑡), 𝑦3(𝑡) = 𝐵(𝑡) and 𝑦4(𝑡) = 𝑋(𝑡). Now, we can rewrite
system (1) in the following form:
𝑑𝑌
𝑑𝑡

= 𝛤 (𝑌 ), 𝛤 = (𝛤1, 𝛤2, 𝛤3, 𝛤4)⊤, 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)⊤ (2)

where ⊤ denotes the transpose and 𝛤𝑖’s denote the right hand sides of
system (1).

Now, for system (2), it is easy to check that

𝛤𝑖(𝑌 )||𝑦𝑖=0, 𝑌∈R4
+
≥ 0. (3)

Indeed, we can see that the following relations hold.

𝛤1(0, 𝑦2, 𝑦3, 𝑦4) = 𝛱 + 𝛼𝑓 (𝑦4)𝑦2 ≥ 0, whenever 𝑦2 ≥ 0, 𝑦3 ≥ 0, 𝑦4 ≥ 0,

𝛤2(𝑦1, 0, 𝑦3, 𝑦4) = 𝛽𝑦1𝑦3 + 𝜆𝑔(𝑦4)𝑦1 ≥ 0, whenever 𝑦1 ≥ 0, 𝑦3 ≥ 0, 𝑦4 ≥ 0,

𝛤3(𝑦1, 𝑦2, 0, 𝑦4) = 0, whenever 𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦4 ≥ 0,

𝛤4(𝑦1, 𝑦2, 𝑦3, 0) = 𝑒𝜂𝑦2 ≥ 0, whenever 𝑦1 ≥ 0, 𝑦3 ≥ 0, 𝑦4 ≥ 0.

Thus, using the result in Krasnosel’skii (1968), we can say that the
conditions denoted by (3) clearly ensures the non-negativity of the
3

solutions 𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡) and 𝑦4(𝑡) of system (1) under the given initial
conditions. It means that all the solutions of the system (1) exists in the
region R4

+ and the solutions remain non-negative for all 𝑡 > 0. This also
implies that the non-negative octant R4

+ becomes an invariant region
for system (1). □

It is also very essential to prove that all the model cell populations
of system (1) are bounded for all time 𝑡 > 0. This justifies that the
system (1) is well-posed and realistic. The next theorem demonstrates
the boundedness of the solutions of system (1).

Theorem 3.2. All the non-negative solutions of system (1) enter the
domain denoted by  ⊂ R4

+ and are ultimately bounded for all possible
time 𝑡 > 0 where the region  is defined as:

 =

{

(𝑆ℎ, 𝑆𝑖, 𝐵,𝑋) ∈ R4
+ ∶ 0 ≤ 𝑆ℎ +𝑆𝑖 ≤ 1, 0 ≤ 𝐵 ≤ 2, 0 ≤ 𝑋 ≤ 3

}

(4)

where 𝑖’s for 𝑖 = 1, 2, 3 are given as:

1 =
𝛱
𝑑
, 2 = 𝑚𝑎𝑥 {𝐾,𝐵(0)} and 3 =

𝑒𝜂𝛱
𝜃𝑑

.

Proof. First, let us consider the first two equations of system (1).
Adding these two equations, we get
𝑑(𝑆ℎ + 𝑆𝑖)(𝑡)

𝑑𝑡
= 𝛱 − (𝑑 + 𝑑𝑖)(𝑆ℎ + 𝑆𝑖)(𝑡)

which implies
𝑑𝑈 (𝑡)
𝑑𝑡

≤ 𝛱 − 𝑑𝑈 (𝑡) = 𝑑1 − 𝑑𝑈 (𝑡), (5)

where 𝑈 (𝑡) = (𝑆ℎ + 𝑆𝑖)(𝑡). Now, using the well-known comparison
principle (Birkhoff and Rota, 1978) to (5), we achieve the following
inequality:

0 < 𝑈 (𝑡) < 1(1 − 𝑒−𝑑𝑡) + 𝑈 (0)𝑒−𝑑𝑡 for 𝑡 > 0. (6)

This implies that 𝑈 (𝑡) ≤ 1 if 𝑈 (0) ≤ 1.
Now, we consider the third equation of system (1). Using Theo-

rem 3.1, we can write the following inequality:
𝑑𝐵(𝑡) ≤ 𝑟𝐵(𝑡)(1 −

𝐵(𝑡)
). (7)
𝑑𝑡 𝐾



Journal of Theoretical Biology 567 (2023) 111496S. Ghosh et al.

0

w

3

o

o
n

𝑆
t
n
l

L
𝑟

R
e
t
e

g

a
s
t
e

S

𝑅

w
𝑀
𝑀

o

Integrating this inequality with the corresponding initial condition
i.e.𝐵(0) > 0, we get

≤ 𝐵(𝑡) ≤ 𝐾𝐵(0)
𝐵(0)(1 − 𝑒−𝑟𝑡) +𝐾𝑒−𝑟𝑡

≤ 2 (8)

here 2 = 𝑚𝑎𝑥 {𝐾,𝐵(0)}.
Again, using the result 0 ≤ 𝑆𝑖 ≤ 𝛱

𝑑 and repeating the similar
argument, we also obtain the following:

0 < 𝑋(𝑡) < 3(1 − 𝑒−𝜃𝑡) +𝑋(0)𝑒−𝜃𝑡 for 𝑡 > 0 (9)

which implies that 𝑋(𝑡) ≤ 3 if 𝑋(0) ≤ 3.
Hence, all the solutions (𝑆ℎ, 𝑆𝑖, 𝐵,𝑋) of system (1) which start in

the region , remain within it for all 𝑡 > 0. This evidently makes  an
invariant region for system (1). Also, the region  is bounded and this
implies that all the mentioned solutions of the system (1) are ultimately
bounded.

Here, it is important to note that all such solutions of system (1)
with the non-negative initial conditions finally arrive into  and stay
in it. This property is justified by the definition of the region  and the
following relationships:
𝑑𝑆ℎ
𝑑𝑡

(𝑡)
|

|

|

|𝜕
< 0,

𝑑𝑆𝑖
𝑑𝑡

(𝑡)
|

|

|

|𝜕
< 0,

𝑑𝐵
𝑑𝑡

(𝑡)
|

|

|

|𝜕
< 0, 𝑑𝑋

𝑑𝑡
(𝑡)
|

|

|

|𝜕
< 0, (10)

which are actually carried out at the points of the boundary 𝜕
of . Also, note that, the relationships in (10) hold outside the re-
gion  which completely ensures the boundedness of all solutions
(𝑆ℎ, 𝑆𝑖, 𝐵,𝑋) of system (1) with the above mentioned non-negative
initial conditions. □

.2. Equilibrium points and their existence

In this section, some basic properties such as existence and stability
f equilibria for system (1) are illustrated.

The equilibrium points are obtained by equating the right-hand side
f each equation in (1) to zero and it is found that system (1) has two
on-negative equilibria, namely

• the trivial disease-free equilibria 𝐸0 =
(

𝛱
𝑑 , 0, 0, 0

)

, which always
exists,

• for the endemic equilibrium 𝐸∗(𝑆∗
ℎ , 𝑆

∗
𝑖 , 𝐵

∗, 𝑋∗) ≠ 0 to exist, its
coordinates must satisfy the following conditions: 𝑆∗

ℎ > 0, 𝑆∗
𝑖 > 0,

𝐵∗ > 0 and 𝑋∗ > 0 where

𝑆∗
ℎ =

𝑟[𝛼𝑓 (𝑋∗) + 𝑑𝑖]𝜃𝑋∗

𝑒𝜂[𝛽𝐾(𝑟 − 𝑑𝑏𝑋∗) + 𝑟𝜆𝑔(𝑋∗)]
, 𝑆∗

𝑖 = 𝜃𝑋∗

𝑒𝜂
,

𝐵∗ = 𝐾
𝑟
(𝑟 − 𝑑𝑏𝑋∗) and 𝑋∗ = 𝑟

𝑑𝑏
(1 − 𝐵∗

𝐾
).

Here, using Theorem 3.2 i.e the fact that the bacterial concentration
𝐵(𝑡) cannot exceed the carrying capacity 𝐾 of the M. leprae bacterial
population, it follows that 𝑋∗ = 𝑟

𝑑𝑏
(1 − 𝐵∗

𝐾 ) > 0. Also, this implies that
𝑆∗
𝑖 = 𝜃𝑋∗

𝑒𝜂 > 0 as 𝑋∗ > 0.
Now, considering the formulas of 𝑆∗

ℎ and 𝐵∗, we can see that both
∗
ℎ > 0 and 𝐵∗ > 0 provided the condition 𝑟 > 𝑑𝑏𝑋∗ holds. This ensures

he existence of positive endemic equilibrium 𝐸∗ of system (1). We
ow summarize the previous discussions by constructing the following
emma.

emma 3.1. The positive endemic equilibrium 𝐸∗ of system (1) exists if
> 𝑑𝑏𝑋∗ is satisfied.

emark 3.1. The sufficient condition for the existence of the endemic
quilibrium 𝐸∗ is that whenever the ratio of intrinsic growth rate and
he rate at which M. leprae bacteria is killed by the drug therapy,

∗

4

xceeds 𝑋 . Biologically, this is well supported as it means that the
rowth rate (𝑟) of the bacterial population and the killing rate (𝑑𝑏) of
the bacteria by MDT plays a crucial role in this scenario and if the ratio
becomes relatively higher than endemic state MDT concentration 𝑋∗,
the infected steady state becomes feasible i.e begins to exist.

3.3. Stability analysis

In this section, at first, we deduce the basic reproduction number 𝑅0
and discuss the local asymptotic stability of the disease-free equilibrium
𝐸0.

Biologically, we can say that 𝑅0 is the average number of new
secondary infections in a completely susceptible Schwann cell popu-
lation. To evaluate 𝑅0, we choose the next-generation matrix method
(Heffernan et al., 2005). We consider only the infected compartments
(𝑆𝑖(𝑡), 𝐵(𝑡) and 𝑋(𝑡)) of system (1) i.e. to be precise, the second, third
nd fourth equations of system (1). Now, let us define the three dimen-
ional matrices  and  as the matrices describing the new infection
erms and the remaining transfer terms evaluated at the disease-free
quilibrium 𝐸0 =

(

𝛱
𝑑 , 0, 0, 0

)

, respectively. The linearization of the
second, third and fourth equations of system (1) at the disease-free state
𝐸0 can be rewritten in the following form:
𝑑𝑊
𝑑𝑡

= ( − )𝑊

where 𝑊 = (𝑆𝑖, 𝐵,𝑋)⊤ and the matrices  and  are given as:

 =
⎛

⎜

⎜

⎝

0 𝛽𝛱
𝑑

𝜆𝑞𝛱
𝑑

0 0 0
𝑒𝜂 0 0

⎞

⎟

⎟

⎠

and  =
⎛

⎜

⎜

⎝

𝑑𝑖 0 0
0 −𝑟 0
0 0 𝜃

⎞

⎟

⎟

⎠

. (11)

Using the spectral radius of the next-generation matrix a threshold
criterion i.e. the basic reproduction number 𝑅0 can be determined
which is actually the largest eigenvalue (𝜌) of the matrix −1. Hence,

𝑅0 = 𝜌(−1) = max
|𝜅|

det(𝜅𝐼 − −1)

where 𝐼 is the identity matrix of order 3 and

−1 =

⎛

⎜

⎜

⎜

⎝

0 − 𝛽𝛱
𝑑𝑟

𝜆𝑞𝛱
𝑑𝜃

0 0 0
𝑒𝜂
𝑑𝑖

0 0

⎞

⎟

⎟

⎟

⎠

. (12)

o, finally we have

0 =

√

𝜆𝛱𝑞𝑒𝜂
𝑑𝑑𝑖𝜃

. (13)

Now, the discussion of local stability of disease-free equilibrium 𝐸0
with respect to the basic reproduction number 𝑅0 can be summarized
in the following theorem.

Theorem 3.3. The system is stable at 𝐸0 if 𝑅0 < 1 and becomes unstable
for 𝑅0 > 1. Consequently, a transcritical bifurcation occurs at the critical
value 𝑅0 = 1.

At the endemic equilibrium 𝐸∗ = (𝑆∗
ℎ , 𝑆

∗
𝑖 , 𝐵

∗, 𝑋∗), the Jacobian
matrix of system (1) takes the following form:

 (𝐸∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑀∗
11 𝑀∗

12 −𝑀∗
13 −𝑀∗

14

𝑀∗
21 𝑀∗

22 𝑀∗
13 𝑀∗

14

0 0 𝑀∗
33 𝑀∗

34

0 𝑀∗
42 0 𝑀∗

44

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

here 𝑀∗
11 = −(𝛽𝐵∗ + 𝜆𝑔(𝑋∗) + 𝑑) = −(𝑀∗

21 + 𝑑), 𝑀∗
12 = 𝛼𝑓 (𝑋∗),

∗
13 = 𝛽𝑆∗

ℎ , 𝑀∗
14 = −𝛼𝑓 ′(𝑋∗)𝑆∗

𝑖 + 𝜆𝑔′(𝑋∗)𝑆∗
ℎ , 𝑀∗

21 = 𝛽𝐵∗ + 𝜆𝑔(𝑋∗),
∗
22 = −𝛼𝑓 (𝑋∗) − 𝑑𝑖, 𝑀∗

33 = 𝑟 − 2𝑟𝐵∗

𝐾 − 𝑑𝑏𝑋∗, 𝑀∗
34 = −𝑑𝑏𝐵∗, 𝑀∗

42 = 𝑒𝜂,
𝑀∗

44 = −𝜃. Expanding det( −𝜐𝐼) = 0, we get the characteristic equation
f system (1) at the endemic equilibrium point 𝐸∗ as follows:

𝑌 (𝜐) = 𝜐4 + 𝜓 𝜐3 + 𝜓 𝜐2 + 𝜓 𝜐 + 𝜓 = 0 (14)
1 2 3 4
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where

𝜓1 = −(𝑀∗
11 +𝑀

∗
22 +𝑀

∗
33 +𝑀

∗
44),

𝜓2 =𝑀∗
33𝑀

∗
44 +𝑀

∗
33(𝑀

∗
11 +𝑀

∗
22) +𝑀

∗
44(𝑀

∗
11 +𝑀

∗
22)

+ 𝑀∗
11𝑀

∗
22 −𝑀

∗
42𝑀

∗
14 −𝑀

∗
21𝑀

∗
12,

𝜓3 =𝑀∗
42𝑀

∗
14(𝑀

∗
11 +𝑀

∗
21 +𝑀

∗
33) −𝑀

∗
33𝑀

∗
44(𝑀

∗
11 +𝑀

∗
22)

− 𝑀∗
33(𝑀

∗
11𝑀

∗
22 −𝑀

∗
21𝑀

∗
12)

− 𝑀∗
44(𝑀

∗
11𝑀

∗
22 −𝑀

∗
21𝑀

∗
12) −𝑀

∗
13𝑀

∗
34𝑀

∗
42,

𝜓4 =𝑀∗
13𝑀

∗
34𝑀

∗
42(𝑀

∗
11 +𝑀

∗
21) +𝑀

∗
33𝑀

∗
44(𝑀

∗
11𝑀

∗
22 −𝑀

∗
21𝑀

∗
12)

− 𝑀∗
14𝑀

∗
33𝑀

∗
42(𝑀

∗
11 +𝑀

∗
21).

he characteristic equation 𝑌 (𝜐) = 𝜐4 + 𝜓1𝜐3 + 𝜓2𝜐2 + 𝜓3𝜐 + 𝜓4 = 0
denoted by Eq. (14) will play the dominant role in determining the local
asymptotic stability of 𝐸∗ for system (1). Hence, using Routh–Hurwitz
criterion for system (1), we can obtain the following theorem:

Theorem 3.4. At the endemic equilibrium point 𝐸∗, all the roots of
the characteristic polynomial of system (1) will be negative real or possess
negative real parts i.e. system (1) will be locally asymptotically stable at 𝐸∗

if the following four conditions hold true:

𝜓1 > 0, 𝜓4 > 0, 𝜓1𝜓2 > 𝜓3 and 𝜓1𝜓2𝜓3 − 𝜓2
3 − 𝜓2

1𝜓4. (15)

In view of the above discussion, we can also present the following
result.

Proposition 3.1. The endemic equilibrium point 𝐸∗ is stable if the
condition 𝑅0 > 1 is satisfied.

4. Hopf-bifurcation analysis of the system

A system exhibits Hopf-bifurcation at the endemic steady state if
the characteristic equation of the system at that state possesses a
pair of purely imaginary eigenvalues and all the other eigenvalues
are negative real or with negative real parts. We now study the local
Hopf-bifurcation at the endemic equilibrium 𝐸∗. Here, for 𝐸∗, we con-
sider 𝜁 (= (𝛱, 𝛽, 𝛼, 𝜆, 𝑑, 𝑑𝑖, 𝑟, 𝐾, 𝑑𝑏, 𝑒, 𝜂, 𝜃)) ∈ R is the generic bifurcation
parameter of the system.

Let, 𝛷 ∶ (0,∞) ⟶ R be a continuously differentiable function of 𝜁
defined as

𝛷(𝜁 ) = 𝜓1(𝜁 )𝜓2(𝜁 )𝜓3(𝜁 ) − 𝜓2
3 (𝜁 ) − 𝜓4(𝜁 )𝜓2

1 (𝜁 ). (16)

For the hopf-bifurcation to occur, there exists a 𝜁∗ ∈ (0,∞) in the
spectrum 𝜓(𝜁 ) = {𝜐 ∶ 𝑌 (𝜐) = 0} of the characteristic Eq. (14), at which a
pair of complex eigenvalues 𝜐(𝜁∗) and 𝜐̄(𝜁∗) ∈ 𝜓(𝜁 ) satisfy the following
two conditions:

Re[𝜐(𝜁∗)] = 0, Im[𝜐(𝜁∗)] = 𝜔0 > 0.

In addition, the following transversality condition also must have to
be satisfied :
𝑑Re(𝜐𝑗 (𝜁 ))

𝑑𝜁

|

|

|

|

|𝜁=𝜁∗
≠ 0 for 𝑗 = 1, 2. (17)

heorem 4.1. The endemic equilibrium 𝐸∗ of system (1) undergoes
opf-bifurcation at 𝜁 = 𝜁∗ ∈ (0,∞) if and only if

2(𝜁∗) > 0, 𝜓3(𝜁∗) > 0, 𝜓4(𝜁∗) > 0, 𝜓1(𝜁∗)𝜓2(𝜁∗) − 𝜓3(𝜁∗) > 0, (18)

𝛷(𝜁∗) = 0 and 𝜓3
1𝜓

′
2𝜓3(𝜓1−3𝜓3)−(𝜓2𝜓

2
1 −2𝜓

2
3 )(𝜓

′
3𝜓

2
1 −𝜓

′
1𝜓

2
3 ) ≠ 0. (19)

In addition, at 𝜁 = 𝜁∗, the characteristic equation contains a pair of purely
imaginary eigenvalues and the other two eigenvalues will be negative real or
having negative real parts where differentiation with respect to 𝜁 is denoted
by primes.
5

Proof. From the condition, 𝛷(𝜁∗) = 0, the characteristic Eq. (14) can
be rewritten in the form

(𝜐2 +
𝜓3
𝜓1

)(𝜐3 + 𝜓1𝜐 +
𝜓1𝜓4
𝜓3

) = 0. (20)

We now denote the four roots of Eq. (20) in the complex domain by
𝜐𝑖 for 𝑖 = 1, 2, 3, 4 and let, the pair of imaginary roots at 𝜁 = 𝜁∗ being
1 = 𝜐̄2. Hence, we get that

𝜐3 + 𝜐4 = −𝜓1, 𝜔2
0 + 𝜐3 + 𝜐4 = 𝜓2,

𝜔2
0(𝜐3 + 𝜐4) = −𝜓3, 𝜔2

0𝜐3𝜐4 = 𝜓4

here 𝜔0 = Im𝜐1𝜁∗. Considering this set of equations, we can see
hat 𝜔0 =

√

𝜓3
𝜓1

and if 𝜓3, 𝜓4 are chosen as complex conjugates
hen we have that 2Re𝜐3 = −𝜓1. From the characteristic Eq. (14), it
ollows that 𝜐3 < 0, 𝜐4 < 0 if 𝜐3, 𝜐4 are real roots. Now, to verify the
ransversality conditions, we substitute 𝜐𝑗 (𝜁 ) = 𝜎1(𝜁 )± 𝑖𝜎2(𝜁 ) in Eq. (14)
nd differentiating, it follows that
{

𝐾(𝜁 )𝜎′1(𝜁 ) − 𝐿(𝜁 )𝜎
′
2(𝜁 ) +𝑀(𝜁 ) = 0,

𝐿(𝜁 )𝜎′1(𝜁 ) +𝐾(𝜁 )𝜎′2(𝜁 ) +𝑁(𝜁 ) = 0,
(21)

here the values of 𝐾(𝜁 ), 𝐿(𝜁 ), 𝑀(𝜁 ) and 𝑁(𝜁 ) are given as

𝐾(𝜁 ) = 4𝜎31 − 12𝜎1𝜎2 + 3𝜓1(𝜎21 − 𝜎
2
2 ) + 2𝜓2𝜎1 + 𝜓3,

𝐿(𝜁 ) = 12𝜎21𝜎2 + 6𝜓1𝜎1𝜎2 − 4𝜎31 + 2𝜓2𝜎1,

(𝜁 ) = 𝜓1𝜎
3
1 − 3𝜓 ′

1𝜎1𝜎
2
2 + 𝜓

′
2(𝜎

2
1 − 𝜎

2
2 ) + 𝜓

′
3𝜎1,

𝑁(𝜁 ) = 3𝜓 ′
1𝜎

2
1𝜎2 − 𝜓

′
1𝜎

3
2 + 2𝜓 ′

2𝜎1𝜎2 + 𝜓
′
3𝜎1.

Now, solving (21) for 𝜎′1(𝜁 ), we get that

𝑑Re(𝜐𝑗 (𝜁 ))
𝑑𝜁

|

|

|

|

|𝜁=𝜁∗
= 𝜎′1(𝜁 )

|

|

|𝜁=𝜁∗

= −
[𝐿(𝜁∗)𝑁(𝜁∗) +𝐾(𝜁∗)𝑀(𝜁∗)]

𝐾2(𝜁∗) + 𝐿2(𝜁∗)

=
𝜓3
1𝜓

′
2𝜓3(𝜓1 − 3𝜓3) − 2(𝜓2𝜓2

1 − 2𝜓2
3 )(𝜓

′
3𝜓

2
1 − 𝜓 ′

1𝜓
2
3 )

𝜓4
1 (𝜓1 − 3𝜓3)2 + 4(𝜓2𝜓2

1 − 2𝜓2
3 )

2
.

rom this result, we can see that 𝜓4
1 (𝜓1 − 3𝜓3)2 + 4(𝜓2𝜓2

1 − 2𝜓2
3 )

2 > 0
lways. Hence,
𝑑Re(𝜐𝑗 (𝜁 ))

𝑑𝜁

|

|

|

|

|𝜁=𝜁∗
≠ 0

olds if
3
1𝜓

′
2𝜓3(𝜓1 − 3𝜓3) − 2(𝜓2𝜓

2
1 − 2𝜓2

3 )(𝜓
′
3𝜓

2
1 − 𝜓 ′

1𝜓
2
3 ) ≠ 0.

hus, Hopf-bifurcation occurs for the critical value 𝜁 = 𝜁∗ at a neigh-
ourhood of the endemic equilibrium 𝐸∗ of system (1). □

Remark 4.1. Hopf-bifurcating periodic solutions appear for our system
cell populations in the neighbourhood of 𝐸∗. This indicates that the
system (1) undergoes stability switches as an effect of administering
MDT drug concentrations into the human body. The impact of 𝜆 as well
as the infection rate 𝛽 is notable here while the drug efficacy rate of
MDT 𝜂 contributes most significantly to this behaviour of the densities
of the steady state populations.

5. Numerical simulations

In this section, we perform numerical simulations for our four
dimensional mathematical model using Matlab 2016a to validate and
justify all of our analytical findings achieved in the Sections 3.2, 3.3
and 4. These numerical findings help us interpreting the dynamical
shifts of our system cell populations in presence of MDT and more
specifically, the procedure of infection of recovered Schwann cells as
a resultant of gradually waning drug dose efficiency. Separate simula-

tions have been performed for PB and MB cases considering different
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Table 1
List of parameter values used in numerical simulations for system (1).
Parameter Parameter definition Assigned value (Unit) Range

𝛱 Production rate of healthy Schwann cells 35 (cells day−1) 20–50
𝛽 Contact rate of M. leprae and healthy cells 0.0022 (mm3 day−1) 0.0012–0.0058
𝛼 Recovery rate of infected cells 0.0001 (mm3 day−1) 0.00008–0.0002
𝜆 Infection rate due to fading effect of MDT 0.00042 (mm3 day−1) 0.0002–0.00045
𝑑 Natural death rate of healthy Schwann cell 0.004 (day−1) 0.0015–0.006
𝑑𝑖 Natural death rate of infected Schwann cell 0.0036 (day−1) 0.0001–0.0046
𝜂 Drug efficacy rate of MDT 0.026 –
𝑟 Growth rate of M. leprae bacteria 0.1 (day−1) –
𝐾 Carrying capacity of the bacteria 500 (mm−3) 200–700
𝑑𝑏 Rate at which M. leprae is killed by MDT 0.0022 (day−1) 0.0014–0.003
𝑒 Proportionality constant 1.1 –
𝜃 Rate of flushing out of the drug MDT 0.00012 (μM day−1) 0.0001–0.0002
Fig. 2. Dynamical nature of the trajectories the healthy Schwann cells (𝑆𝐻 (𝑡)), infected Schwann cells (𝑆𝐼 (𝑡)), M. leprae bacteria (𝐵(𝑡)) of the system without drugs at the endemic
tate 𝐸∗ for 𝑅0 > 1. The initial values of the system populations are considered as: 𝑆𝐻 (0) = 100, 𝑆𝐼 (0) = 5, 𝐵(0) = 20 and values of all the other parameters are chosen from
able 1.
Fig. 3. Comparison of the oscillatory solutions of the healthy Schwann cells (𝑆𝐻 (𝑡)), infected Schwann cells (𝑆𝐼 (𝑡)), M. leprae bacteria (𝐵(𝑡)) of system (1) for different values of
rug efficacy rate 𝜂 at the steady state when 𝑅0 > 1. Trajectories coloured in blue, red and brown indicate the densities of the system population for the values of 𝜂 = 0.018,
= 0.02 and 𝜂 = 0.022. Values of rest of the parameters used in the simulation of this figure are taken from Table 1.
M
T
s
d

w
o
o

alues of infection rates depending on bacterial index (BI) and drug
fficacy rates. To carry this out, we use a set of parameters provided
n Table 1. Some of the values of these parameters for system (1) are
ssumed and other values are either obtained from several literatures
r estimated from different elemental sources (Ghosh et al., 2021,
022; Fischer, 2017; Talhari et al., 2015). For the purpose of numerical
imulations, we have used the explicit forms as 𝑓 (𝑋) = 𝑋

1+𝑋 and 𝑔(𝑋) =
1

1+𝑋 . We choose the initial values in number dependent according to the
cardinal rule of scientific hypothesis.

In Fig. 2, we have demonstrated the behaviour of the trajectories
of the system without drugs for 𝑅0 > 1 at the endemic state 𝐸∗. It is
evident that in this scenario, system cell populations exhibits periodic
oscillatory solutions i.e. the densities of healthy Schwann cells (𝑆𝐻 (𝑡)),
nfected Schwann cells (𝑆𝐼 (𝑡)) and M. leprae bacteria (𝐵(𝑡)) fluctuate
apidly in the neighbourhood of 𝐸∗ in the absence of drug. Biologically,
t clearly justifies the essence of incorporating MDT therapy into the
ystem for the densities of the system populations to arrive in a stable
6

tate.
Next, in Fig. 3, solution trajectories of the populations of system (1)
the endemic state 𝐸∗ have been described for three different values of
𝜂 i.e. for the values of 𝜂 = 0.018, 0.02, 0.022. Our findings suggests that
amplitude of the fluctuation in the densities of 𝑆𝐻 cells, 𝑆𝐼 cells and
. leprae bacteria 𝐵 decreases as 𝜂 is increased from the value 0.018.
his specific pattern indicates that the system populations tends to a
table concentration gradually with the increasing of the value of the
rug efficacy rate 𝜂 of MDT.

In Fig. 4, bifurcation diagrams of the populations of system (1)
ith respect to the efficacy rate 𝜂 are depicted at a neighbourhood
f the endemic equilibrium 𝐸∗. For the value of 𝜂 < 0.024, periodic
scillatory solutions are observed but as the value of 𝜂 crosses the

critical value 𝜂 = 𝜂∗ = 0.024, system becomes stable. Thus, it clearly
indicates that the efficacy rate of MDT, 𝜂 plays a crucial role in leprosy
pathogenesis as the whole dynamical shifting of the behaviour of the
trajectories of the system cell populations depends primarily on this
parameter. Biologically, this reflects that MDT therapy with an efficacy
rate 𝜂 greater than the threshold value 𝜂 = 𝜂∗ is strictly recommended



Journal of Theoretical Biology 567 (2023) 111496S. Ghosh et al.
Fig. 4. Demonstration of bifurcation diagrams and oscillation of the model populations for system (1) plotted as a function of drug efficacy rate 𝜂 for 𝑅0 > 1. Here, steady state
values of all the populations are plotted together with the minimum/maximum of the periodic solutions when it exists. We choose the values of the parameters as given in Table 1.
Unstable and stable zones are clearly displayed by the dotted vertical line drawn at the critical value 𝜂 = 𝜂∗ = 0.024.
Fig. 5. Poincare section for the set of parameter values for system (1). Here, the investigation is performed for six different values of efficacy rate 𝜂 to achieve the six subfigures.
The values of parameters are chosen as 𝛱 = 50 cells day−1, 𝛽 = 0.00014 mm3 day−1 and all the other parameters are taken from Table 1.
to reduce the disease dissemination process effectively into the human
body.

In Fig. 5, we have demonstrated the Poincare section for the pa-
rameter values of system (1) represented in Table 1. Here, we have
actually plotted 𝑆̇𝑖(𝑡) vs 𝑆𝑖(𝑡) using six different values of 𝜂. The dis-
crete dynamical behaviour of our continuous system (1) through the
intersection of periodic orbits in the state space is investigated and
represented here to establish a permissible range of drug efficacy 𝜂 for
which the system remains stable. This figure describes that the points
assemble together to form a definite pattern occupying a subset of the
phase space. The values of 𝑆̇𝑖(𝑡) ranges over nearly ≈ 1 to 3.56 for all
the subfigures but we can see that this specific pattern is not deviated
or more particularly, for the values of 𝜂 = 0.024, 0.025, 0.026, it does
7

not lose the shape as the values of 𝑆𝑖(𝑡) is increased. This dynamical
nature of system (1) precisely forms the origination of an attractor
such that the system trajectories intersect the plane in this pattern. This
attractor is a limit cycle and hence, we can conclude that the system
is stable for this specific ranges of values of 𝜂. Also, from this figure,
our findings confirm the global asymptotical stability of system (1)
as we have opted for Poincare section method here in exhibiting this
phenomenon instead of extensive and tedious analytical calculations.

Next, in Fig. 6, we have plotted time evolution of the sum of all
four Lyapunov’s exponents of the model populations for system (1) for
different values of 𝜂 and the corresponding dynamics of Lyapunov’s
exponents are described. To indicate the PB types of cases, the value
of 𝛽 is chosen considerably low i.e.𝛽 = 0.0032 mm3 day−1. The values
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Fig. 6. Plot of the sum of all the Lyapunov’s exponents of the model cell populations for system (1) for Paucibacillary (PB) types of infection. Values of the parameters are taken
= 0.0032 mm3 day−1 and 𝐾 = 420 mm−3 and the values of the other parameters are chosen from Table 1. Trajectories coloured in blue, pink and red indicate the dynamics of

he sum of the exponents of 𝑆𝐻 cells, 𝑆𝐼 cells, bacteria 𝐵(𝑡) and MDT concentration 𝑋(𝑡) with time for the values of 𝜂 = 0.027, 𝜂 = 0.06 and 𝜂 = 0.07 respectively.
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of drug-efficacy rate 𝜂 are chosen as 𝜂 = 0.027, 0.06 and 0.07 and all the
other parameter values are chosen here according to the values given in
Table 1. Investigating the Lyapunov’s exponents for our system enables
us to detect the presence of chaos and quantify the stability or insta-
bility of the system. Fig. 6 actually determines the system’s sensitivity
to initial conditions and more precisely, measures the robustness of the
densities of the system populations: 𝑆ℎ0 , 𝑆𝑖0 , 𝐵0 and 𝑋0 at the time
= 0. Moreover, positivity of the sum of Lyapunov exponents means

hat the system is sensitive to the initial values and possesses chaotic
ature. The obtained dynamics of Lyapunov’s exponents explains that
or 𝜂 = 0.027, the sum of the exponents remains negative suggesting
hat system (1) remains stable in this case. This finding also supports
he results achieved in Fig. 4. Also, for higher values of efficacy rate
.e. for 𝜂 = 0.06, 0.07, system exhibits chaotic behaviour and ultimately,
ecomes unstable again which is validated by the positive values of sum
f Lyapunov’s exponents of all the system populations. Specifically, it
uggests us that applying MDT for a prolonged period of time i.e. from
months to 12 months in PB cases with a very high efficacy rate (i.e. for
> 0.059) on a leprosy affected person, does not actually exhibit any

ruitful result (Narang et al., 2022). Rather, it induces substantial drug
esistance (Sansarricq, 2004) and severe adverse drug effects (Deps
t al., 2007; Kaluarachchi et al., 2001) into the human body. This
ndicates a treatment tenure of at least 120 days for PB cases which
lso supports the WHO recommended PB multidrug therapy regimen
ompletely (World Health Organization, 1998).

Similarly, in Fig. 7, time evolution of the sum of all the Lyapunov’s
xponents of our system cell populations are demonstrated for the
alues of 𝜂 = 0.055, 0.06 and 0.07 for 300 days. To simulate this
igure, value of 𝛽 is considered as 𝛽 = 0.0071 to specifically indicate
he infection rate of multibacillary (MB) types of leprosy patients.
imulation shows that our system populations starts getting stabilized
fter 300 days of treatment with safe and effective efficacy zone of
∈ (0.025, 0.059) which is also recognized by the WHO mentioned

uidelines for multibacillary leprosy patients.
Fig. 8 investigates and presents the sensitivity of the level of

reatment i.e. the drug efficacy rate (𝜂) which we incorporate in the
ystem with time as the infection rate (𝛽) increases. The values of 𝛽 has
een varied in the range 0.001–0.009 to simulate this figure. According
8

o the sensitivity profile displayed in this figure, we can clearly see that o
Table 2
Classification of the influence of MDT based on the values of 𝜂 for system (1).

Range of values of 𝜂 Overall impact of MDT on a leprosy patient

0 < 𝜂 ≤ 0.024 Ineffective or mildly effective
0.025 < 𝜂 < 0.059 Safe and strongly effective
𝜂 ≥ 0.06 Unsafe

𝜂 is highly sensitive to the infection rate 𝛽 which regulates the overall
progression of infection into a leprosy patient.

Finally, the combined impact of 𝜂 and 𝜆 on the basic reproduction
number 𝑅0 and also the impact of 𝜂 and 𝛽 on 𝑅0 has been displayed in
the subfigure (a) and subfigure (b) respectively in Fig. 9. In subfigure
(a), we have demonstrated the contour plot of 𝜂, 𝜆 and 𝑅0 in the three
dimensional space where both the values of 𝜂 and 𝜆 are varied over
the interval (0, 1). The plane denoted by 𝑅0 = 1 plays a decisive role
here as it intersects the other two planes. This intersection particularly
contributes to present the coupled threshold values of level of treatment
where 𝜂 plays a determining role for the control of the disease progres-
sion. In the contour plot denoted by subfigure (b), the intersection of
the plane 𝑅0 = 1 provides us a decisive criteria for the feasibility of
the endemic state 𝐸∗ and its dependency on the two most significant
parameters 𝜂 and 𝛽 for finding an effective yet safe drug dose regimen
or leprosy.

In view of the above numerical simulations and the analytical
esults obtained in the previous sections, we now present the following
able 2 which describes the dynamical behaviour of the system and
verall impact of the multidrug therapy for different values of efficacy
ate 𝜂 into a leprosy affected person.

. Discussion and conclusion

Leprosy is a chronic disorder of the peripheral nervous system which
ontinues to remain as one of the most neglected tropical diseases
n the last few decades. Clinical researchers and biologists have done
any experiments in the past years to decode the disease dynamics of

eprosy. Still, the fundamental issues involving the drug-effectiveness
f MDT therapy, drug overdose situation, proper length or duration
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Fig. 7. Plot of the sum of all the Lyapunov’s exponents of the model cell populations for system (1) for Multibacillary (MB) types of infection. Values of the parameters are taken
𝛽 = 0.0071 mm3 day−1 and 𝐾 = 480 mm−3 and the values of the other parameters are chosen from Table 1. Trajectories coloured in blue, pink and red indicate the dynamics of
the sum of the exponents of 𝑆𝐻 cells, 𝑆𝐼 cells, bacteria 𝐵(𝑡) and MDT concentration 𝑋(𝑡) with time for the values of 𝜂 = 0.055, 𝜂 = 0.07 and 𝜂 = 0.06 respectively.
Fig. 8. Analysis of the sensitivity of the drug efficacy rate (𝜂) with time as the infection rate (𝛽) increases for system (1) for 100 days of treatment. As the colour becomes darker
from light, the figure indicates a higher sensitivity profile. All the parameter values are chosen from Table 1 to simulate this figure.
of treatment, adverse therapeutic effects and re-emergence of the in-
fection (Sales et al., 2013; Gelber and Grosset, 2012; Penna, 2014)
into the human body are hardly investigated and analysed from a
mathematical point of view. To fill these gaps, we have presented a
four dimensional nonlinear ODE based mathematical model describing
the infection of healthy Schwann cells and recovery of the infected cells
of the peripheral nervous system through multidrug therapy.

We have obtained mathematical constraint about the existence of
the positive endemic equilibrium 𝐸∗ in Lemma 3.1 in Section 3.2
and the local asymptotical stability conditions of system (1) at 𝐸∗

in Theorem 3.4 by using the well-known Routh–Hurwitz criterion. We
have also derived the basic reproduction number 𝑅0 for system (1).
When 𝑅 greater than unity, the disease-free equilibrium 𝐸 exists and
9

0 0
becomes unstable. Here, 𝐸∗ emerges for 𝑅0 > 1 which suggests that the
disease starts invading the healthy cell population in this scenario. On
the other hand, for 𝑅0 < 1, the disease leprosy is eliminated and this
clearly indicates occurrence of a transcritical bifurcation at the critical
value 𝑅0 = 1. The necessarily required transversality condition for the
occurrence of Hopf-bifurcation is established by Theorem 4.1 in Sec-
tion 4 which indicates that system (1) behaves in a stable manner as 𝜂
crosses the threshold value 𝜂∗. This behavioural change in the pattern
of the solutions of the system is observed due to the downregulating
and reprogramming effect of healthy adult cells within the body of a
leprosy affected person as demonstrated by Masaki et al. (2013).

During the investigation of system (1), we have used some pa-
rameters for exhibiting numerical examples and to make our model
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Fig. 9. Three dimensional contour plots of different pairs of parameters with the basic reproduction number 𝑅0 for system (1). Values of rest of the parameters used here are
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iologically reasonable which are hypothetically assumed due to the
navailability of sufficient real clinical data. If proper ranges of values
f these parameters were available, it would be possible to frame the
rug dose regimens more realistically. Our proposed treatment design
hould necessarily be used for future pharmaceutical trials after consid-
ring the results from proper clinical experiments. Also, it is important
o note that the actual mode of mechanism of MDT on infected Schwann
ells are still very complicated and not completely explored by the
cientists. Due to this reason, we have chosen 𝑓 (𝑋) and 𝑔(𝑋) in the gen-
ral functional form rather using any explicit mathematical expression.
ny strictly monotonic increasing and decreasing real-valued function
ith 𝑓 (0) = 0, 𝑔(0) = 1, sup 𝑓 (𝑋) = 1 and inf 𝑔(𝑋) = 0 defined on R

would perfectly fit into our model as 𝑓 (𝑋) and 𝑔(𝑋) respectively so that
any futuristic work on leprosy considering our system would surely be
benefited. In addition, future works on leprosy can also be performed
in this direction by constructing different mathematical models for PB
and MB types of infections to look into the finer details of the leprosy
dynamics.

We have also compared our analytical findings with the numerical
results obtained in Section 5. The numerical interpretations in Figs. 3–6
completely suggest us that varying the drug efficacy rate of all the three
components of MDT within the fixed range 0.025–0.059 for approxi-

ately 120 days in PB cases and 300 days in MB cases helps the system
etting stabilized and thus, the dissemination of leprosy to different
uman organs can evidently be controlled. Impact of MDT has ex-
lored two simultaneously occurring phenomenon i.e. the spontaneous
ecovery of the infected cells 𝑆𝑖 and the re-infection of the recovered
ells due to the waning effect of MDT which predicts that the drug
fficacy rate 𝜂 of MDT is the most influential parameter for system (1)
onitoring the overall stability situation and dynamical shift of the

ystem. For very low efficacy rate, weak bactericidal activity of MDT
gainst M. leprae is noted. Due to this, for 𝜂 ≤ 𝜂∗ = 0.024, oscillatory
eriodic solutions of system (1) are noticed which indicates that MDT in
his low efficacy zone is ineffective and any notable improvement in the
eduction of the bacterial load are not observed (Shepard, 1981; Prasad
nd Kaviarasan, 2010). This findings is also supported by the recent
linical studies (Penna et al., 2012, 2017) where based on the random-
zed and controlled clinical trial on 613 newly diagonized untreated
eprosy patients in China, India and Bangladesh, the authors have
onfirmed that an uniform treatment method called uniform multidrug
herapy (U-MDT) can be an acceptable option for future treatment of
eprosy worldwide especially in the endemic countries. Moreover, from
he findings of Figs. 6, 8 and Table 2, we can interpret that for the
ange of values of 𝜂 > 0.06, solutions of system (1) becomes chaotic and
10

ltimately unstable. Hence, incorporating an abruptly higher drug dose r
s unsafe for the leprosy patients and would eventually have a negative
ffect on the human body because it induces drug resistance and severe
dverse drug effects such as irreversible nerve damages, blindness etc.
Guragain et al., 2017; Sansarricq, 2004).

Considering the Ridley–Jopling classification of leprosy (Ridley and
opling, 1966), we can see that due to higher values of intrinsic growth
ate (𝑟) and carrying capacity (𝐾) of M. leprae, higher range of values

of 𝜂 in between 0.052–0.059 should necessarily be used as an effective
reatment method for lepromatous leprosy cases (LL). For PB cases
especially in tuberculoid TT), our analytical and numerical findings
rom Figs. 5, 6 and 8 suggests that a lesser efficacy rate of varying 𝜂

within the range 0.025–0.04 for nearly 120 days will be more beneficial
ue to the smear-negative property and low bacterial index with BI
2 (skin lesions ≤ 5). Clinical studies validate this finding also as the

utcomes of Prasad and Kaviarasan (2010) suggests that PB patients are
ostly found to be lepromin-positive and after completion of therapy,

he residual organisms into the human body will be tackled by the host
mmune response.

Framing a shorter period of effective treatment policy is of major
mportance always to avoid relapse and irregularities in treatment
Gelber et al., 2004; Girdhar et al., 2000). Considering the WHO
ecommended classification, there are two major types of leprosy de-
ending on the count of bacterial load in the skin smears and these
re as follows ∶ Paucibacillary leprosy (PB) for bacterial index BI < 2
nd Multibacillary leprosy (MB) for BI ≥ 2. The reduced multidrug
herapy regimen recommended by WHO for leprosy is scheduled as

months in PB cases and 6 - 12 months in MB cases (World Health
rganization, 1998; Renault and Ernst, 2015; Rodrigues and Lockwood,
011). During the numerical simulation portion, specifically in Fig. 6,
e have chosen the value of infection rate 𝛽 = 0.0032 considerably low

o indicate actually the infection of PB types of leprosy patients. This
roduces the result that the system starts getting stabilized after 120
ays i.e. at least 120 days (or 4 months) of treatment with maintaining

the efficacy range 𝜂 ∈ (0.025, 0.059) is recommended for PB cases. For
he infection of MB types of patients, bacterial load is much higher
s BI ≥ 2 and hence, 𝛽 = 0.0071 is chosen to simulate Fig. 7. In this

case, our outcomes in Figs. 4, 7 suggest that drug efficacy rate 𝜂 cannot
be increased more than 0.059 as the cell concentrations of our system
becomes unstable. This evidently indicates the essence of applying a
flexible version of MDT therapy with 𝜂 in the safe and effective zone
i.e. 𝜂 ∈ (0.025, 0.059) but necessarily for a longer treatment period of
nearly 300 days [10 months] for MB cases as demonstrated in Fig. 7.

hus, our suggested treatment policy is clearly effective, avoids the
oncerns of drug resistance, adverse drug effects and supports the WHO

ecommended treatment regime for both PB and MB types of leprosy
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patients but modified as an effect of the crucial interplay of the most
significant parameter drug efficacy rate 𝜂 of MDT.

After 12 months, presence of viable load of bacilli after treatment
with MDT are observed in some specific cases for patients with high
bacillary load (Shetty et al., 2003; Narang et al., 2022; Kar et al., 2004;
Gupta et al., 2005). Hence, strict long-term followup is needed and the
overall health situations of every leprosy patient should be monitored
very carefully after RFT (release for treatment). Indeed, if required, for
the PB patients and especially, for the MB patients with high initial
BI (Prasad and Kaviarasan, 2010), the pattern of sensitivity profile of
𝜂 vs. 𝛽 demonstrated in Fig. 8 and Table 2 suggests that treatment can
be continued after the recommended period within the prescribed drug
efficacy zone for some cases considering different status of the disease.

In our current research work, we have discussed a four dimensional
mathematical model which successfully captures some basic and in-
triguing features of the disease dissemination process and therapeutic
approaches for leprosy. Our proposed treatment policy with a flexible
version of MDT with the prescribed zone of drug efficacy rate and
treatment tenures for both paucibacillary and multibacillary types of
patients is much safer, effective and can really be a potential candidate
for future clinical trials and for the pharmacists aiming to develop a
realistic and accurate treatment regime.
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