

 MICROPROCESSORS LAB

 1. Program 1: 8- bit Subtraction

 2. Program 2: 8- bit Division

 3. Program 3: Palindrome

 4. Program 4: Ascending order

 5. Program 5: Descending order

 6. Program 6: 16- bit Addition

 7. Program 7: BCD to binary conversion

 8. Program 8: Binary to BCD conversion

 9. Program 9: Addition of a series of numbers

 10. Program 10: 8- bit Multiplication

 11. Program 11: Largest number in a list

 12. Program 12: LCD

 13. Program 13: 7 Segment display

 14. Program 14: To generate AP series of n numbers

 15. Program 15: 8085 Program to compute LCM

 MICROPROCESSORS LAB

 1. INTRODUCTION TO 8085 MICROPROCESSOR

 1.1 Introduction

 The 8085 microprocessor was made by Intel in mid 1970s. It was binary

 compatible with 8080 microprocessor but required less supporting hardware thus leading

 to less expensive microprocessor systems. It is a general purpose microprocessor capable

 of addressing 64k of memory. The device has 40 pins, require a +5V power supply and

 can operate with 3 MHz single phase clock. It has also a separate address space for up to

 256 I/O ports. The instruction set is backward compatible with its predecessor 8080 even

 though they are not pin-compatible.

 3

 MICROPROCESSORS LAB

 1.2 8085 Internal Architecture

 The 8085 has a 16 bit address bus which enables it to address 64 KB of memory, a

 data bus 8 bit wide and control buses that carry essential signals for various operations. It

 also has a built in register array which are usually labelled A(Accumulator), B, C, D, E,

 H, and L. Further special-purpose registers are the 16-bit Program Counter (PC), Stack

 Pointer (SP), and 8-bit flag register F. The microprocessor has three maskable interrupts

 (RST 7.5, RST 6.5 and RST 5.5), one Non-Maskable interrupt (TRAP), and one

 externally serviced interrupt (INTR). The RST n.5 interrupts refer to actual pins on the

 processor a feature which permitted simple systems to avoid the cost of a separate

 interrupt controller chip.

 Control Unit

 It generates signals within microprocessor to carry out the instruction, which has

 been decoded. In reality causes certain connections between blocks of the processor be

 opened or closed, so that data goes where it is required, and so that ALU operations

 occur.

 4

 MICROPROCESSORS LAB

 Arithmetic Logic Unit

 The ALU performs the actual numerical and logic operation such as „add‟,

 „subtract‟, „AND‟, „OR‟, etc. Uses data from memory and from Accumulator to

 perform arithmetic and always stores the result of operation in the Accumulator.

 Registers

 The 8085 microprocessor includes six registers, one accumulator, and one flag

 register, as shown in Fig 1. In addition, it has two 16-bit registers: the stack pointer and

 the program counter. The 8085 has six general-purpose registers to store 8-bit data; these

 are identified as B, C, D, E, H, and L as shown in Fig 1. They can be combined as

 register pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer

 can use these registers to store or copy data into the registers by using data copy

 instructions.

 Accumulator

 The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform arithmetic and logical operations.

 The result of an operation is stored in the accumulator. The accumulator is also identified

 as register A.

 Flag Registers

 The ALU includes five flip-flops, which are set or reset after an operation

 according to data conditions of the result in the accumulator and other registers. They are

 called Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The

 most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these

 flags to test data conditions.

 Program Counter (PC)

 This 16-bit register deals with sequencing the execution of instructions. This

 register is a memory pointer. Memory locations have 16-bit addresses, and that is why

 this is a 16-bit register. The microprocessor uses this register to sequence the execution of

 5

 MICROPROCESSORS LAB

 the instructions. The function of the program counter is to point to the memory address

 from which the next byte is to be fetched. When a byte (machine code) is being fetched,

 the program counter is incremented by one to point to the next memory location.

 Stack Pointer (SP)

 The stack pointer is also a 16-bit register used as a memory pointer. It points to a

 memory location in R/W memory, called the stack. The beginning of the stack is defined

 by loading 16-bit address in the stack pointer.

 Instruction Register / Decoder

 This is a temporary storage for the current instruction of a program. Latest

 instruction is sent to here from memory prior to execution. Decoder then takes instruction

 and „decodes‟ or interprets the instruction. Decoded instruction is then passed to next

 stage.

 Memory Address Register (MAR)

 It holds addresses received from PC for eg: of next program instruction. MAR

 feeds the address bus with address of the location of the program under execution.

 Control Generator

 It generates signals within microprocessor to carry out the instruction which has

 been decoded. In reality it causes certain connections between blocks of the processor to

 be opened or closed, so that data goes where it is required, and so that ALU operations

 occur.

 Register Selector

 This block controls the use of the register stack. Just a logic circuit which

 switches between different registers in the set will receive instructions from Control Unit.

 8085 System Bus

 The microprocessor performs four operations primarily.

 6

 MICROPROCESSORS LAB

 • Memory Read

 • Memory Write

 • I/O Read

 • I/O Write

 All these operations are part of the communication processes between microprocessor

 and peripheral devices. The 8085 performs these operations using three sets of

 communication lines called buses - the address bus, the data bus and the control bus.

 Address Bus

 The address bus is a group of 16 lines. The address bus is unidirectional: bits flow

 only in one direction – from the 8085 to the peripheral devices. The microprocessor uses

 the address bus to perform the first function: identifying a peripheral or memory location.

 Each peripheral or memory location is identified by a 16 bit address. The 8085 with its 16

 lines is capable of addressing 64 K memory locations.

 Data Bus

 The data bus is a group of eight lines used for dataflow. They are bidirectional:

 data flows in both direction between the 8085 and memory and peripheral devices. The 8

 lines enable the microprocessor to manipulate 8-bit data ranging from 00 to FF.

 Control Bus

 The control bus consists of various single lines that carry synchronization signals.

 These are not groups of lines like address of data bus but individual lines that provide a

 pulse to indicate an operation. The 8085 generates specific control signal for each

 operation it performs. These signals are used to identify a device type which the

 processor intends to communicate.

 7

 MICROPROCESSORS LAB

 1.3 8085 Pin Diagram

 8085 Pin Description

 Properties

 ƒ Single + 5V Supply

 ƒ 4 Vectored Interrupts (One is Non Maskable)

 ƒ Serial In/Serial Out Port

 ƒ Decimal, Binary, and Double Precision Arithmetic

 ƒ Direct Addressing Capability to 64K bytes of memory

 8

 MICROPROCESSORS LAB

 A8-A15 (Output 3 states)

 Address Bus carries the most significant 8 bits of the memory address or the 8 bits of

 the I/0 address; 3 stated during Hold and Halt modes.

 AD0 - AD 7 (Input/Output 3state)

 Multiplexed Address/Data Bus carries Lower 8 bits of the memory address (or I/O

 address) appear on the bus during the first clock cycle of a machine state. It then becomes the

 data bus during the second and third clock cycles. 3 stated during Hold and Halt modes.

 ALE (Output)

 Address Latch Enable occurs during the first clock cycle of a machine state and

 enables the address to get latched into the on chip latch of peripherals. The falling edge of

 ALE is set to guarantee setup and hold times for the address information. ALE can also be

 used to strobe the status information. ALE is never 3 stated.

 SO, S1 (Output)

 Data Bus Status: Encoded status of the bus cycle

 S1 S0

 0 0 HALT

 0 1 WRITE

 1 0 READ

 1 1 FETCH

 RD (Output 3state)

 READ indicates the selected memory or 1/0 device is to be read and that the Data

 Bus is available for the data transfer.

 WR (Output 3state)

 WRITE indicates the data on the Data Bus is to be written into the selected memory

 9

 MICROPROCESSORS LAB

 or 1/0 location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt modes.

 READY (Input)

 If Ready is high during a read or write cycle, it indicates that the memory or

 peripheral is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go

 high before completing the read or write cycle.

 HOLD (Input)

 HOLD indicates that another Master is requesting the use of the address and data

 buses. The CPU, upon receiving the Hold request, will relinquish the use of buses as soon as

 the completion of the current machine cycle. Internal processing can continue. The processor

 can regain the buses only after the Hold is removed. When the Hold is acknowledged, the

 Address, Data, RD, WR, and IO/M lines are 3stated.

 HLDA (Output)

 HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and

 that it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold

 request is removed. The CPU takes the buses one half clock cycle after HLDA goes low.

 INTR (Input)

 INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only

 using the next to the last clock cycle of the instruction. If it is active, the Program Counter

 (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a

 RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The

 INTR is enabled and disabled by software. It is disabled by Reset and immediately after an

 interrupt is accepted.

 INTA (Output)

 INTERRUPT ACKNOWLEDGE is used instead of (and has the same timing as) RD

 during the Instruction cycle after an INTR is accepted. It can be used to activate the 8259

 10

 MICROPROCESSORS LAB

 Interrupt chip or some other interrupt port.

 RST 5.5/ RST 6.5/ RST 7.5

 RESTART INTERRUPTS have the same timing as I NTR except they cause an

 internal RESTART to be automatically inserted.

 RST 7.5 🡪 Highest Priority

 RST 6.5

 RST 5.5 🡪 Lowest Priority

 The priority of these interrupts is ordered as shown above. These interrupts have a higher

 priority than the INTR.

 TRAP (Input)

 Trap interrupt is a non-maskable restart interrupt. It is recognized at the same time as

 INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any

 interrupt.

 RESET IN (Input)

 Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA

 flipflops. None of the other flags or registers (except the instruction register) are affected The

 CPU is held in the reset condition as long as Reset is applied.

 RESET OUT (Output)

 It indicates that CPU is been reset. It used as a system RESET. The signal is

 synchronized to the processor clock.

 X1, X2 (Input)

 Crystal or R/C network connections to set the internal clock generator X1 can also be

 an external clock input instead of a crystal. The input frequency is divided by 2 to give the

 internal operating frequency.

 11

 MICROPROCESSORS LAB

 CLK (Output)

 Clock Output is used as a system clock when a crystal or R/ C network is used as an

 input to the CPU. The period of CLK is twice the X1, X2 input period.

 IO/M (Output)

 IO/M indicates whether the Read/Write is to memory or l/O. It is tristated during

 Hold and Halt modes.

 SID (Input)

 Serial input data line:The data on this line is loaded into accumulator bit 7 whenever a

 RIM instruction is executed.

 SOD (output)

 Serial output data line: The output SOD is set or reset as specified by the SIM

 instruction.

 Vcc

 Vss

 +5V supply.

 Ground Reference

 1.4 8085 Addressing modes

 They are mainly classified into four:

 ● Immediate addressing.

 ● Register addressing.

 ● Direct addressing.

 ● Indirect addressing.

 12

 MICROPROCESSORS LAB

 Immediate addressing

 Data is present in the instruction. Load the immediate data to the destination provided.

 Example: MVI R, data

 Register addressing

 Data is provided through the

 registers. Example: MOV Rd, Rs

 Direct addressing

 It is used to accept data from outside devices to store in the accumulator or send the data

 stored in the accumulator to the outside device. Accept the data from the port 00H and store

 them into the accumulator or Send the data from the accumulator to the port 01H.

 Example: IN 00H or OUT 01H

 Indirect Addressing

 In this mode the Effective Address is calculated by the processor and the contents of the

 address (and the one following) are used to form a second address. The second address is

 where the data is stored. Note that this requires several memory accesses; two accesses to

 retrieve the 16-bit address and a further access (or accesses) to retrieve the data which is to

 be loaded into the register.

 8.5. 8085 Microprocessor Trainer Kit

 8.5.1 Introduction

 From the 4 bit microprocessor brought out by Intel in 1971,advancement in

 technology have been made and now 8 bit ,16 bit , 32 bit and 64 bit microprocessors are

 available and 64 bit and 32 bit microprocessors are dominating the market. From the age of

 vacuum tubes and transistors, we are now in the age of microprocessors. Due to its

 adoptability and intelligence, they are used extensively. The trainer kit is a low cost 8085

 based training tool developed specifically for learning the operation of today's

 microprocessor based systems.

 13

 MICROPROCESSORS LAB

 14

 MICROPROCESSORS LAB

 8.6. 8085 Instruction Set Summary

 Mnemonic Description Clock Cycles

 MOV r1 r2 Move register to register 4

 MOV M r Move register to memory 7

 MOV r M Move memory to register 7

 MVI r Move immediate register 7

 MVI M Move immediate memory 10

 LXI B Load immediate register Pair B & C 10

 LXI D Load immediate register Pair D & E 10

 LXI H Load immediate register Pair H & L 10

 LXI SP Load immediate stack pointer 10

 STAX B Store A indirect 7

 STAX D Store A indirect 7

 LDAX B Load A indirect 7

 LDAX D Load A indirect 7

 STA Store A direct 13

 LDA Load A direct 13

 SHLD Store H & L direct 16

 LHLD Load H & L direct 16

 XCHG Exchange D & E H & L registers 4

 PUSH B Push register Pair B & C on stack 12

 PUSH D Push register Pair D & E on stack 12

 PUSH H Push register Pair H & L on stack 12

 PUSH PSW Push A and Flags on stack 12
 15

 MICROPROCESSORS LAB

 POP B Pop register Pair B & C off stack 10

 POP D Pop register Pair D & E off stack 10

 POP H Pop register Pair H & L off stack 10

 POP PSW Pop A and Flags off stack 10

 XTHL Exchange top of stack H & L 16

 SPHL H & L to stack pointer 6

 JUMP

 JMP Jump unconditional 10

 JC Jump on carry 7/10

 JNC Jump on no carry 7/10

 JZ Jump on zero 7/10

 JNZ Jump on no zero 7/10

 JP Jump on positive 7/10

 JM Jump on minus 7/10

 JPE Jump on parity even 7/10

 JPO Jump on parity odd 7/10

 PCHL H & L to program counter 6

 CALL

 CALL Call unconditional 18

 CC Call on carry 9/18

 CNC Call on no carry 9/18

 CZ Call on zero 9/18

 CNZ Call on no zero 9/18

 CP Call on positive 9/18

 16

 MICROPROCESSORS LAB

 CM Call on minus 9/18

 CPE Call on parity even 9/18

 CPO Call on parity odd 9/18

 RET Return 10

 RC Return on carry 6/12

 RNC Return on no carry 6/12

 RZ Return on zero 6/12

 RNZ Return on no zero 6/12

 RP Return on positive 6/12

 RM Return on minus 6/12

 RPE Return on parity even 6/12

 RPO Return on parity odd 6/12

 RST Restart 12

 IN Input 10

 OUT Output 10

 INR r Increment register 4

 DCR r Decrement register 4

 INR M Increment memory 10

 DCR
 M Decrement memory 10

 INX B Increment B & C registers 6

 INX D Increment D & E registers 6

 INX H Increment H & L registers 6

 NX SP Increment stack pointer 6

 17

 MICROPROCESSORS LAB

 DCX B Decrement B & C 6

 DCX D Decrement D & E 6

 DCX H Decrement H & L 6

 DCX
 SP Decrement stack pointer 6

 ADD r Add register to A 4

 ADC r Add register to A with carry 4

 ADD
 M Add memory to A 7

 ADC
 M Add memory to A with carry 7

 ADI Add immediate to A 7

 ACI Add immediate to A with carry 7

 DAD B Add B & C to H & L 10

 DAD D Add D & E to H & L 10

 DAD H Add H & L to H & L 10

 DAD
 SP Add stack pointer to H & L 10

 SUB r Subtract register from A 4

 SBB r Subtract register from A with borrow 4

 SUB
 M Subtract memory from A 7

 SBB M Subtract memory from A with borrow 7

 SUI Subtract immediate from A 7

 SBI Subtract immediate from A with borrow 7

 18

 MICROPROCESSORS LAB

 ANA r And register with A 4

 XRA r Exclusive Or register with A 4

 ORA r Or register with A 4

 CMP r Compare register with A 4

 ANA
 M And memory with A 7

 XRA
 M Exclusive Or Memory with A 7

 ORA
 M Or memory with A 7

 CMP
 M Compare memory with A 7

 ANI And immediate with A 7

 XRI Exclusive Or immediate with A 7

 ORI Or immediate with A 7

 CPI Compare immediate with A 7

 RLC Rotate A left 4

 RRC Rotate A right 4

 RAL Rotate A left through carry 4

 RAR Rotate A right through carry 4

 CMA Complement A 4

 STC Set carry 4

 CMC Complement carry 4

 DAA Decimal adjust A 4

 EI Enable Interrupts 4

 DI Disable Interrupts 4

 19

 MICROPROCESSORS LAB

 NOP No-operation 4

 HLT Halt (Power down) 5

 RIM Read Interrupt Mask 4

 SIM Set Interrupt Mask 4

 20

 MICROPROCESSORS LAB

 8.7. A Sample Program

 Aim: To multiply two 8 bit numbers.

 Program Analysis: Two 8 bit numbers are stored in memory locations 8100 and 8101.
 They are multiplied and the results are stored in memory locations 8200 and 8201.

 Program:

 Memory Machine Label Opcode Operand Comments

 address code

 8000 AF XRA A Clear A

 8001 A8 XRA B Clear B

 8002 A9 XRA C Clear C

 8003 21 LXI H 8100 Set HL pair as an index

 8004 00 to source memory

 8005 81

 8006 46 MOV B, M Move [M] to B

 8007 23 INX H Increment HL pair

 8008 86 L2 ADD M Add [A] to [M]

 8009 D2 JNC L1

 Jump if no carry to L1 800A 0D

 800B 80

 800C 0C INR C Increment [C]

 800D 05 L1 DCR B Decrement [B]

 800E C2 JNZ L2

 Jump if nonzero to L2 800F 08

 8010 80

 8011 32 STA 8200

 Store [A] in 8200 8012 00

 21

 MICROPROCESSORS LAB

 8013 82

 8014 79 MOV A, C Move [C] to A

 8015 32 STA 8201 Store [A] in memory

 8016 01 location 8201

 8017 82

 8018 76 HLT Stop program

 Result: The program is executed and the results are stored in the memory locations
 8200 and 8201.

 Input: At 8100 : 03

 At 8101 : 02

 Output: At 8200 : 06

 At 8201 : 00

 8.8. 8085 Instructions & Mnemonic Codes

 Hex mnemonic Hex mnemonic Hex mnemonic Hex mnemonic

 CE ACI 8-Bit 3F CMC 2B DCX H 01 LXI B,16-Bit

 8F ADC A BF CMP A 3B DCX SP 11 LXI D,16-Bit

 88 ADC B B8 CMP B F3 DI 21 LXI H,16-Bit

 89 ADC C B9 CMP C FB EI 31 LXI SP,16-Bit

 8A ADC D BA CMP D 76 HLT 7F MOV A A

 8B ADC E BB CMP E DB IN 8-Bit 78 MOV A B

 8C ADC H BC CMP H 3C INR A 79 MOV A C

 8D ADC L BD CMP 04 INR B 7A MOV A D

 8E ADC M BE CMP M 0C INR C 7B MOV A E

 87 ADD A D4 CNC 16-Bit 14 INR D 7C MOV A H

 80 ADD B C4 CNZ 16-Bit 1C INR E 7D MOV A L

 22

 MICROPROCESSORS LAB

 81 ADD C F4 CP 16-Bit 24 INR H 7E MOV A M

 82 ADD D EC CPE 16-Bit 2C INR L 47 MOV B A

 83 ADD E FE CPI 8-Bit 34 INR M 40 MOV B B

 84 ADD H E4 CPO 16-Bit 03 INX B 41 MOV B C

 85 ADD L CC CZ 16-Bit 13 INX D 42 MOV B D

 86 ADD M 27 DAA 23 INX H 43 MOV B E

 C6 ADI 8-Bit 09 DAD B 33 INX SP 44 MOV B H

 A7 ANA A 19 DAD D DA JC 16-Bit 45 MOV B L

 A0 ANA B 29 DAD H FA JM 16-Bit 46 MOV B M

 A1 ANA C 39 DAD SP C3 JMP 16-Bit 4F MOV C A

 A2 ANA D 3D DCR A D2 JNC 16-Bit 48 MOV C B

 A3 ANA E 05 DCR B C2 JNC 16-Bit 49 MOV C C

 A4 ANA H 0D DCR C F2 JP 16-Bit 4A MOV C D

 A5 ANA L 15 DCR D EA JPE 16-Bit 4B MOV C E

 A6 ANA M 1D DCR E E2 JPO 16-Bit 4C MOV C H

 E6 ANA 8-Bit 25 DCR H CA JZ 16-Bit 4D MOV C L

 CD CALL 16-Bit 2D DCR L 3A LDA 16-Bit 4E MOV C M

 DC CC 16-Bit 35 DCR M 0A LDAX B 57 MOV D A

 FC CM 16-Bit 0B DCX B 1A LDAX D 50 MOV D B

 2F CMA 1B DCX D 2A LHLD 16-Bit 51 MOV D C

 Hex mnemonic Hex mnemonic Hex mnemonic Hex mnemonic

 52 MOV D D 71 MOV M C E5 PUSH H 9E SBB M

 53 MOV D E 72 MOV M D F5 PUSH PSW DE SBI 8-Bit

 54 MOV D H 73 MOV M E 17 RAL 22 SHLD 16-Bit

 55 MOV D L 74 MOV M H 1F RAR 30 SIM

 56 MOV D M 75 MOV M L D8 RC F9 SPHL

 23

 MICROPROCESSORS LAB

 5F MOV E A 3E MVI A 8-Bit C9 RET 32 STA 16-Bit

 58 MOV E B 06 MVI B 8-Bit 20 RIM 02 STAX B

 59 MOV E C OE MVI C 8-Bit 07 RLC 12 STAX D

 5A MOV E D 16 MVI D 8-Bit F8 RM 37 STC

 5B MOV E E 1E MOV E 8-Bit D0 RNC 97 SUB A

 5C MOV E H 26 MVI H 8-Bit C0 RNC 90 SUB B

 5D MOV E L 2E MVI L 8-Bit F0 RP 91 SUB C

 5E MOV E M 36 MVI M 8-Bit E8 RPE 92 SUB D

 67 MOV H A 00 NOP E0 RPO 93 SUB E

 60 MOV H B B7 ORA A 0F RRC 94 SUB H

 61 MOV H C B0 ORA B C7 RST 0 95 SUB L

 62 MOV H D B1 ORA C CF RST 1 96 SUB M

 63 MOV H E B2 ORA D D7 RST 2 D6 SUI 16-Bit

 64 MOV H H B3 ORA E DF RST 3 EB XCHG

 65 MOV H L B4 ORA H E7 RST 4 AF XRA A

 66 MOV H M B5 ORA L EF RST 5 A8 XRA B

 6F MOV L A B6 ORA M F7 RST 6 A9 XRA C

 68 MOV L B F6 ORI 8-Bit FF RST 7 AA XRA D

 69 MOV L C D3 OUT 8-Bit C8 RZ AB XRA E

 6A MOV L D E9 PCHL 9F SBB A AC XRA H

 6B MOV L E C1 POP B 98 SBB B AD XRA L

 6C MOV L H D1 POP D 99 SBB C AE XRA M

 6D MOV L L E1 POP H 9A SBB D EE XRI 8-Bit

 6E MOV L M F1 POP PSW 9B SBB E E3 XTHL

 77 MOV M A C5 PUSH B 9C SBB H

 70 MOV M B D5 PUSH D 9D SBB L

 24

 MICROPROCESSORS LAB

 GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

 1. Sign in the log register as soon as you enter the lab and strictly observe your lab timings.

 2. Strictly follow the written and verbal instructions given by the teacher / Lab Instructor. If

 you do not understand the instructions, the handouts and the procedures, ask the

 instructor or teacher.

 3. It is mandatory to come to lab in a formal dress and wear your ID cards.

 4. Do not wear loose-fitting clothing or jewellery in the lab. Rings and necklaces are usual

 excellent conductors of electricity.

 5. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

 6. Keep the labs clean at all times, no food and drinks allowed inside the lab.

 7. Intentional misconduct will lead to expulsion from the lab.

 8. Do not insert connectors forcefully into the sockets.

 9. NEVER try to experiment with the power from the wall plug.

 10. Immediately report dangerous or exceptional conditions to the Lab instructor / teacher:

 Equipment that is not working as expected, wires or connectors are broken, the

 equipment that smells or “smokes”. If you are not sure what the problem is or what's

 going on, switch off the Emergency shutdown.

 11. Never use damaged instruments, wires or connectors. Hand over these parts to the Lab

 instructor/Teacher.

 12. Be sure of location of fire extinguishers and first aid kits in the laboratory.

 13. After verification of program output, turn off power supply to the trainer kit. Do not take

 any item from the lab without permission.

 14. Observation book and lab record should be carried to each lab. Programs of current lab

 session are to be written in Observation book and of previous lab session should be

 written in Lab record book. Both the books should be corrected by the faculty in each lab.

 15. Handling of Microprocessor trainer kit: Sensitive electronic circuits and electronic

 components have to be handled with great care. The inappropriate handling of electronic

 component can damage or destroy the devices. Therefore, always handle the electronic

 devices as indicated by the handout, the specifications in the data sheet or other

 documentation.

 25

 MICROPROCESSORS LAB

 Program 1: 8-BIT SUBTRACTION

 Aim : To subtract two 8-bit numbers.

 Method : The numbers to be subtracted are stored in memory locations. First number is brought
 to accumulator and the second number in the memory is subtracted from it. If a carry is
 generated, the result stored in the accumulator is complemented and a 1 is added to it. Finally,
 the result and carry are stored in memory locations.

 Flowchart :

 1

 MICROPROCESSORS LAB

 Program 2: 8-BIT DIVISION

 Aim: To divide two 8-bit numbers.

 Method : The numbers to be divided are stored in memory locations. The dividend is moved to
 accumulator. The divisor is subtracted from the accumulator content until a carry is generated.
 The number of times this subtraction is done will give the quotient and the remaining value in
 the accumulator will give the remainder of division.

 Flowchart :

 2

 MICROPROCESSORS LAB

 Program 3: CHECKING WHETHER A NUMBER IS PALINDROME

 Aim : To check whether the given number is a palindrome or not.

 Method : The number to be checked is stored in a memory location. It is fetched to a register and
 the first and last nibbles are separated. The first nibble is rotated left and the carry flag is
 checked. The last nibble is rotated right and the carry flag is again checked. If the carry flags of
 these two operations do not yield the same value, 00 is stored in memory location indicating that
 the number is not a palindrome and the program comes to a halt. But if, they yield the same
 result the process is repeated 4 times. If it completes 4 iterations successfully ie. the carry flags
 for each nibble in an iteration remain the same, 01 is stored in memory location indicating that
 the number is a palindrome.

 Flowchart :

 3

 MICROPROCESSORS LAB

 Program 4: SORTING NUMBERS IN ASCENDING ORDER

 Aim: To sort 10 numbers stored in consecutive memory locations in ascending order.

 Method : Initialize cycle counter, comparison counter with corresponding values and the address
 pointer to the location where the data is stored. Move the data pointed by the address pointer to
 the accumulator. Compare it with next data. If the accumulator content is less than the next data
 then exchange the data. Decrement comparison counter. Repeat the process with the next data
 until comparison counter is 0. If the comparison counter is zero then decrement cycle counter
 and if it is not zero increment the address pointer and repeat the whole process until cycle
 counter is zero.

 Flowchart :

 4

 MICROPROCESSORS LAB

 5

 MICROPROCESSORS LAB

 Program 5: SORTING NUMBERS IN DESCENDING ORDER

 Aim : To sort 10 numbers stored in consecutive memory locations in descending order.

 Method : Initialize cycle counter, comparison counter with corresponding values and the address
 pointer to the location where the data is stored. Move the data pointed by the address pointer to
 the accumulator. Compare it with next data. If the accumulator content is larger than the next
 data then exchange the data. Decrement comparison counter. Repeat the process with the next
 data until comparison counter is 0. If the comparison counter is zero then decrement cycle
 counter and if it is not zero increment the address pointer and repeat the whole process until
 cycle counter is zero.

 Flowchart :

 6

 MICROPROCESSORS LAB

 7

 MICROPROCESSORS LAB

 Program 6: 16-BIT ADDITION

 Aim : To add two 16 bit numbers.

 Method : The numbers to be added are stored in two 16 bit registers. They are added and the
 resultant sum and carry are stored in memory locations.

 Flowchart :

 8

 MICROPROCESSORS LAB

 Program 7: CONVERTING BCD NUMBER TO BINARY

 Aim : To convert a BCD number to a binary number.

 Method : The number is ANDed with F0 to obtain the first 4 bits. Then it is rotated 4 times left
 through carry and the value is stored in a register (say B). The last 4 bits obtained when the BCD
 number ANDed with 0F is stored in another register (say C). The value in B is multiplied by 10
 and then it is added with the contents of C to obtain the equivalent binary number. The carry, if
 any is also stored in some registers.

 Flowchart :

 9

 MICROPROCESSORS LAB

 Program 8: CONVERTING BINARY NUMBER TO BCD

 Aim : To convert a binary number to BCD number.

 Method : The binary number is stored in a register. Count the number of 100s and store it in a
 register say A. Count the number of 10s in it and store it in a register say B. Subtract all 100s,
 10s from the original binary number and the resulting value is stored in another register. These 3
 values stored will give the equivalent BCD number.

 Flowchart :

 10

 MICROPROCESSORS LAB

 Program 9: ADDITION OF SERIES OF NUMBERS

 Aim : To add ten 8 bit numbers.

 Method : Move first data to accumulator. Initialize count register. Add the next data with data in
 the accumulator. If there is a carry increments carry register. Decrement the count register. If it is
 zero store the result. Else fetch the next data and add with value in the accumulator. Repeat until
 carry register is zero.

 Flowchart :

 11

 MICROPROCESSORS LAB

 12

 MICROPROCESSORS LAB

 Program 10: 8-BIT MULTIPLICATION

 Aim : To multiply two 8 bit numbers.

 Method : Store one of the data in a register (say C register). Move the second data to
 accumulator. Move the accumulator content to another register (say B register). Set the data in
 the C register as a counter. Add the data in B register to the content of accumulator. Decrement
 the value in C register. Repeat the addition until the value in the counter register C is zero. The
 final value in the accumulator will be the product of the two values.

 Flowchart :

 13

 MICROPROCESSORS LAB

 Program 11: LARGEST NUMBER IN A LIST

 Aim : To find out the largest of ten 8 bit numbers.

 Method : The numbers are stored in consecutive memory locations. The counter register is
 initialized with 0A and the address pointer points to the first number. The first number is moved
 to a register say B. The address pointer is incremented and counter register is decremented and
 the next number is fetched to accumulator. If the content of accumulator is greater than that in B,
 it is loaded in B. The counter register is decremented and the process is repeated until the counter
 register reaches to 0. The final value in B will give the largest number in the series.

 Flowchart:

 14

 MICROPROCESSORS LAB

 15

 MICROPROCESSORS LAB

 Program 12: DISPLAYING TEXT ON LCD
 Aim : To display text on LCD using 8085 and 8255.
 Apparatus required :
 8085 Microprocessor trainer kit, LCD interface board, Regulated Power supply.

 Description : LCD interface is connected over J2 of the trainer. When the trainer kit in KEYBOARD
 or SERIAL mode it scans system key codes.

 8255 port addresses: Control word register-43H

 Flowchart :

 16

 MICROPROCESSORS LAB

 Program 13: DISPLAYING TEXT ON 7 SEGMENT
 Aim : To display text on seven segment display using 8085 and 8255.
 Apparatus required :
 8085 Microprocessor trainer kit, seven segment display interface board, Regulated Power
 supply.

 Description : Seven segment display interface is connected over J2 of the trainer. When the trainer kit
 in KEYBOARD or SERIAL mode scrolling and flashing of display can be observed.

 17

 MICROPROCESSORS LAB

 Program 14: To generate AP series of n numbers

 Algorithm –

 1. Store 500 to SI and 600 to DI Load data from offset 500 to register CL and set

 register CH to 00 (for count).

 2. Increase the value of SI by 1.

 3. Load first number(value) from next offset (i.e 501) to register AL.

 4. Store the value of register AL to memory offset DI.

 5. Increase DI by 1.

 6. Decrease the CL by 1.

 7. Load second number(common difference) from next offset (i.e 502) to register BL.

 8. Add register AL and BL.

 9. Store the result (value of register AL) to memory offset DI.

 10. Increase the value of SI by 1.

 11. Loop above 3 till register CX gets 0.

 18

 MICROPROCESSORS LAB

 Program 15: 8085 Program to compute LCM

 In this program we are reading the data from 8000H and 8001H. By loading the

 number, we are storing it at C register, and clear the B register. The second number

 is loaded into Accumulator. Set DE as the 2's complement of BCregister. This DE is

 used to subtract BC from HL pair.

 The method is like this:let us say the numbers are 25 and 15. When we divide the

 first number by second, and then if there is no remainder, then the first number is

 the LCM. But for this case the remainder is present. Then we will check the next

 multiple of 25 to check the divisibility. When the remainder becomes 0, the program

 terminates and the result is stored.

 19

 MICROPROCESSORS LAB

 20

