SIR GURUDAS MAHAVIDYALAYA
Department of Computer Sc.

LAB MANUAL

Microprocessor and its applications
Programming with Microprocessor 8085
(CMSA CC10)

MICROPROCESSORS LAB

1.

Program 1: 8- bit Subtraction

Program 2: 8- bit Division

Program 3: Palindrome

Program 4: Ascending order

Program 5: Descending order

Program 6: 16- bit Addition

Program 7: BCD to binary conversion

Program 8: Binary to BCD conversion

Program 9: Addition of a series of numbers

10.

Program 10: 8- bit Multiplication

11.

Program 11: Largest number in a list

12.

Program 12: LCD

13.

Program 13: 7 Segment display

14.

Program 14: To generate AP series of n numbers

15.

Program 15: 8085 Program to compute LCM

MICROPROCESSORS LAB

1. INTRODUCTION TO 8085 MICROPROCESSOR

1.1 Introduction

The 8085 microprocessor was made by Intel in mid 1970s. It was binary
compatible with 8080 microprocessor but required less supporting hardware thus leading
to less expensive microprocessor systems. It is a general purpose microprocessor capable
of addressing 64k of memory. The device has 40 pins, require a +5V power supply and
can operate with 3 MHz single phase clock. It has also a separate address space for up to
256 1/0 ports. The instruction set is backward compatible with its predecessor 8080 even

though they are not pin-compatible.

MICROPROCESSORS LAB

1.2 8085 Internal Architecture

[]
E:*fﬁ:% o
ZE2RRf 3 B
ptitid !
[rarrupt contrd | |E>erial o W'drr.ﬂ|

B-bit intemnal data bus

I
"
Accumulator | |Temp reg| |Flag flip-flops| |f | Instruction Breg (8)|Crep (B)
(Areg) (8) (8) ©)|l{=cter © | [Grog @Eea @] |.
T l u Heg @|Les ®] |Z
Adith Irstruction Swok poinger (16) I'_".'E
logcal unit || decoder and | [Progiam counier_ (16)} = |2
(ALL) (g)[[mechine cycle) fiemanteridecrementer
encoding | |address latch (16)
| ; ‘
Timing and control 3 d
—{CLK Address Dataladdress|
—=IGEN Control Status DMA Raeset| |24 & bufer {8)
§§E§§ﬁ@|§g§f§ A=A AD, = AD,
Xz “ITH B address bus address/data bus
o o8
k-

The 8085 has a 16 bit address bus which enables it to address 64 KB of memory, a
data bus 8 bit wide and control buses that carry essential signals for various operations. It
also has a built in register array which are usually labelled A(Accumulator), B, C, D, E,
H, and L. Further special-purpose registers are the 16-bit Program Counter (PC), Stack
Pointer (SP), and 8-bit flag register F. The microprocessor has three maskable interrupts
(RST 7.5, RST 6.5 and RST 5.5), one Non-Maskable interrupt (TRAP), and one
externally serviced interrupt (INTR). The RST n.5 interrupts refer to actual pins on the
processor a feature which permitted simple systems to avoid the cost of a separate

interrupt controller chip.

Control Unit

It generates signals within microprocessor to carry out the instruction, which has
been decoded. In reality causes certain connections between blocks of the processor be
opened or closed, so that data goes where it is required, and so that ALU operations

occur.

MICROPROCESSORS LAB

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as ,,add",
,subtract®, ,AND®, ,,OR", etc. Uses data from memory and from Accumulator to

perform arithmetic and always stores the result of operation in the Accumulator.

Registers

The 8085 microprocessor includes six registers, one accumulator, and one flag
register, as shown in Fig 1. In addition, it has two 16-bit registers: the stack pointer and
the program counter. The 8085 has six general-purpose registers to store 8-bit data; these
are identified as B, C, D, E, H, and L as shown in Fig 1. They can be combined as
register pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer
can use these registers to store or copy data into the registers by using data copy

instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU).
This register is used to store 8-bit data and to perform arithmetic and logical operations.
The result of an operation is stored in the accumulator. The accumulator is also identified

as register A.

Flag Registers

The ALU includes five flip-flops, which are set or reset after an operation
according to data conditions of the result in the accumulator and other registers. They are
called Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The
most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these

flags to test data conditions.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This
register is a memory pointer. Memory locations have 16-bit addresses, and that is why

this is a 16-bit register. The microprocessor uses this register to sequence the execution of

MICROPROCESSORS LAB

the instructions. The function of the program counter is to point to the memory address
from which the next byte is to be fetched. When a byte (machine code) is being fetched,
the program counter is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a
memory location in R/W memory, called the stack. The beginning of the stack is defined

by loading 16-bit address in the stack pointer.

Instruction Register / Decoder

This is a temporary storage for the current instruction of a program. Latest
instruction is sent to here from memory prior to execution. Decoder then takes instruction
and ,,decodes™ or interprets the instruction. Decoded instruction is then passed to next

stage.

Memory Address Register (MAR)

It holds addresses received from PC for eg: of next program instruction. MAR

feeds the address bus with address of the location of the program under execution.

Control Generator

It generates signals within microprocessor to carry out the instruction which has
been decoded. In reality it causes certain connections between blocks of the processor to
be opened or closed, so that data goes where it is required, and so that ALU operations

occur.

Register Selector

This block controls the use of the register stack. Just a logic circuit which

switches between different registers in the set will receive instructions from Control Unit.

8085 System Bus

The microprocessor performs four operations primarily.

MICROPROCESSORS LAB

* Memory Read
* Memory Write
* /O Read
e /O Write

All these operations are part of the communication processes between microprocessor
and peripheral devices. The 8085 performs these operations using three sets of

communication lines called buses - the address bus, the data bus and the control bus.

Address Bus

The address bus is a group of 16 lines. The address bus is unidirectional: bits flow
only in one direction — from the 8085 to the peripheral devices. The microprocessor uses
the address bus to perform the first function: identifying a peripheral or memory location.
Each peripheral or memory location is identified by a 16 bit address. The 8085 with its 16

lines is capable of addressing 64 K memory locations.

Data Bus

The data bus is a group of eight lines used for dataflow. They are bidirectional:
data flows in both direction between the 8085 and memory and peripheral devices. The 8

lines enable the microprocessor to manipulate 8-bit data ranging from 00 to FF.

Control Bus

The control bus consists of various single lines that carry synchronization signals.
These are not groups of lines like address of data bus but individual lines that provide a
pulse to indicate an operation. The 8085 generates specific control signal for each
operation it performs. These signals are used to identify a device type which the

processor intends to communicate.

MICROPROCESSORS LAB

1.3 8085 Pin Diagram

X1 g a0 [V
X2]2 39 1 HOLD
RESET OUT [2 3g [] HLDA
sSoD 14 37] CLK (QUT)
SID s 36 [1 RESETIN
TRAP [& 35 [READY
RST75 17 24 [10/
RST6 5 [] @ 313 [S
RST5.5 [] 9 322 [R/p
INTR [] 10 8085A 31 1 WR
INTA [11 30 [ALE
AD, [12 20 [s
AD, [13 22 [A,
AD, 14 27 [&,
AD, [15 2 [
AD, 18 25 1 A,
AD, [17 24 [&,
ADg [18 2z 1 A
AD_] 19 22 [A
Vee [20 21 1 Ag
8085 Pin Description
Properties
f Single + 5V Supply
f 4 Vectored Interrupts (One is Non Maskable)
f Serial In/Serial Out Port
f Decimal, Binary, and Double Precision Arithmetic
f Direct Addressing Capability to 64K bytes of memory

MICROPROCESSORS LAB

A8-A1S (Output 3 states)

Address Bus carries the most significant 8 bits of the memory address or the 8 bits of

the 1/0 address; 3 stated during Hold and Halt modes.

ADO - AD 7 (Input/Output 3state)

Multiplexed Address/Data Bus carries Lower 8 bits of the memory address (or I/O
address) appear on the bus during the first clock cycle of a machine state. It then becomes the

data bus during the second and third clock cycles. 3 stated during Hold and Halt modes.

ALE (Output)

Address Latch Enable occurs during the first clock cycle of a machine state and
enables the address to get latched into the on chip latch of peripherals. The falling edge of
ALE is set to guarantee setup and hold times for the address information. ALE can also be

used to strobe the status information. ALE is never 3 stated.

SO, S1 (Output)

Data Bus Status: Encoded status of the bus cycle

S1 SO

0 0 HALT
0 1 WRITE
1 0 READ
1 1 FETCH
RD (Output 3state)

READ indicates the selected memory or 1/0 device is to be read and that the Data

Bus is available for the data transfer.

WR (Output 3state)

WRITE indicates the data on the Data Bus is to be written into the selected memory

MICROPROCESSORS LAB

10

or 1/0 location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or
peripheral is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go

high before completing the read or write cycle.

HOLD (Input)

HOLD indicates that another Master is requesting the use of the address and data
buses. The CPU, upon receiving the Hold request, will relinquish the use of buses as soon as
the completion of the current machine cycle. Internal processing can continue. The processor

can regain the buses only after the Hold is removed. When the Hold is acknowledged, the

Address, Data, RD, WR, and I0/M lines are 3stated.

HLDA (Output)

HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and
that it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold
request is removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only
using the next to the last clock cycle of the instruction. If it is active, the Program Counter
(PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a
RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The
INTR is enabled and disabled by software. It is disabled by Reset and immediately after an

interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE is used instead of (and has the same timing as) RD
during the Instruction cycle after an INTR is accepted. It can be used to activate the 8259

MICROPROCESSORS LAB

11

Interrupt chip or some other interrupt port.

RST 5.5/ RST 6.5/ RST 7.5

RESTART INTERRUPTS have the same timing as I NTR except they cause an
internal RESTART to be automatically inserted.

RST 7.5 = Highest Priority

RST 6.5

RST 5.5 = Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have a higher

priority than the INTR.

TRAP (Input)

Trap interrupt is a non-maskable restart interrupt. It is recognized at the same time as
INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any

interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA
flipflops. None of the other flags or registers (except the instruction register) are affected The

CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)

It indicates that CPU is been reset. It used as a system RESET. The signal is

synchronized to the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be
an external clock input instead of a crystal. The input frequency is divided by 2 to give the

internal operating frequency.

MICROPROCESSORS LAB

12

CLK (Output)

Clock Output is used as a system clock when a crystal or R/ C network is used as an

input to the CPU. The period of CLK is twice the X1, X2 input period.

10/M (Output)

IO/M indicates whether the Read/Write is to memory or 1/O. It is tristated during
Hold and Halt modes.
SID (Input)

Serial input data line:The data on this line is loaded into accumulator bit 7 whenever a

RIM instruction is executed.

SOD (output)

Serial output data line: The output SOD is set or reset as specified by the SIM

instruction.

Vee
+5V supply.

Vss
Ground Reference

1.4 8085 Addressing modes
They are mainly classified into four:

e Immediate addressing.
e Register addressing.
e Direct addressing.

e Indirect addressing.

MICROPROCESSORS LAB

13

Immediate addressing

Data is present in the instruction. Load the immediate data to the destination provided.

Example: MVI R, data

Register addressing

Data is provided through the
registers. Example: MOV Rd, Rs

Direct addressing

It is used to accept data from outside devices to store in the accumulator or send the data
stored in the accumulator to the outside device. Accept the data from the port 00H and store

them into the accumulator or Send the data from the accumulator to the port 01H.
Example: IN 00H or OUT O01H

Indirect Addressing

In this mode the Effective Address is calculated by the processor and the contents of the
address (and the one following) are used to form a second address. The second address is
where the data is stored. Note that this requires several memory accesses; two accesses to
retrieve the 16-bit address and a further access (or accesses) to retrieve the data which is to

be loaded into the register.

8.5. 8085 Microprocessor Trainer Kit
8.5.1 Introduction

From the 4 bit microprocessor brought out by Intel in 1971,advancement in
technology have been made and now 8 bit ,16 bit , 32 bit and 64 bit microprocessors are
available and 64 bit and 32 bit microprocessors are dominating the market. From the age of
vacuum tubes and transistors, we are now in the age of microprocessors. Due to its
adoptability and intelligence, they are used extensively. The trainer kit is a low cost 8085
based training tool developed specifically for learning the operation of today's

microprocessor based systems.

MICROPROCESSORS LAB

14

MICROPROCESSORS LAB

15

8.6. 8085 Instruction Set Summary

Mnemonic

MOV rl 2

MOV Mr

MOV M

MVIr

MVIM

LXIB

LXID

LXITH

LXI SP

STAX B

STAX D

LDAX B

LDAX D

STA

LDA

SHLD

LHLD

XCHG

PUSH B

PUSH D

PUSH H

PUSH PSW

Description

Move register to register

Move register to memory

Move memory to register

Move immediate register

Move immediate memory

Load immediate register Pair B & C
Load immediate register Pair D & E
Load immediate register Pair H & L
Load immediate stack pointer

Store A indirect

Store A indirect

Load A indirect

Load A indirect

Store A direct

Load A direct

Store H & L direct

Load H & L direct

Exchange D & E H & L registers
Push register Pair B & C on stack
Push register Pair D & E on stack
Push register Pair H & L on stack

Push A and Flags on stack

Clock Cycles

10
10
10
10

10

13
13
16

16

12
12
12

12

MICROPROCESSORS LAB

POP B Pop register Pair B & C off stack 10
POP D Pop register Pair D & E off stack 10
POP H Pop register Pair H & L off stack 10
POP PSW Pop A and Flags off stack 10
XTHL Exchange top of stack H & L 16
SPHL H & L to stack pointer 6
JUMP

IMP Jump unconditional 10
JIC Jump on carry 7/10
INC Jump on no carry 7/10
Iz Jump on zero 7/10
INZ Jump on no zero 7/10
JP Jump on positive 7/10
M Jump on minus 7/10
JPE Jump on parity even 7/10
JPO Jump on parity odd 7/10
PCHL H & L to program counter 6
CALL

CALL Call unconditional 18
CC Call on carry 9/18
CNC Call on no carry 9/18
Cz Call on zero 9/18
CNZ Call on no zero 9/18
CP Call on positive 9/18

16

MICROPROCESSORS LAB

17

CM
CPE

CPO

RC

RNC

RNZ

RP

RM

RPO

RST

IN

OuT

INR T

DCRr

INR M

DCR

INX B

INX D

INXH

NX SP

Call on minus

Call on parity even
Call on parity odd
Return

Return on carry
Return on no carry
Return on zero
Return on no zero
Return on positive
Return on minus
Return on parity even

Return on parity odd

Restart

Input

Output

Increment register
Decrement register

Increment memory

Decrement memory

Increment B & C registers
Increment D & E registers
Increment H & L registers

Increment stack pointer

9/18
9/18
9/18
10
6/12
6/12
6/12
6/12
6/12
6/12
6/12

6/12

12
10

10

10

10

MICROPROCESSORS LAB

18

DCX B

DCX D

DCXH

DCX
SP

ADDr

ADCr

ADD

ADC

ADI

ACI

DAD B

DAD D

DAD H

DAD
SP

SUBTr

SBBr

SUB

SBB M

SUI

SBI

Decrement B & C
Decrement D & E

Decrement H & L

Decrement stack pointer

Add register to A

Add register to A with carry

Add memory to A

Add memory to A with carry
Add immediate to A

Add immediate to A with carry
AddB& CtoH& L

AddD & EtoH&L

AddH& LtoH&L

Add stack pointer to H & L
Subtract register from A

Subtract register from A with borrow

Subtract memory from A
Subtract memory from A with borrow
Subtract immediate from A

Subtract immediate from A with borrow

10

10

10

10

MICROPROCESSORS LAB

19

ANATr

XRAT

ORA T

CMPr

ANA

XRA

ORA

CMP

ANI

XRI

ORI

CPI

RLC

RRC

CMA

STC

CMC

DAA

EI

DI

And register with A
Exclusive Or register with A
Or register with A

Compare register with A

And memory with A

Exclusive Or Memory with A

Or memory with A

Compare memory with A
And immediate with A
Exclusive Or immediate with A
Or immediate with A
Compare immediate with A
Rotate A left

Rotate A right

Rotate A left through carry
Rotate A right through carry
Complement A

Set carry

Complement carry

Decimal adjust A

Enable Interrupts

Disable Interrupts

MICROPROCESSORS LAB

20

NOP

HLT

RIM

SIM

No-operation
Halt (Power down)
Read Interrupt Mask

Set Interrupt Mask

MICROPROCESSORS LAB

21

8.7. A Sample Program

Aim: To multiply two 8 bit numbers.

Program Analysis: Two 8 bit numbers are stored in memory locations 8100 and 8101.

They are multiplied and the results are stored in memory locations 8200 and 8201.

Program:
Memory Machine Label Opcode Operand Comments
address code
8000 AF XRA A Clear A
8001 A8 XRA B Clear B
8002 A9 XRAC Clear C
8003 21 LXIH 8100 Set HL pair as an index
8004 00 to source memory
8005 81
8006 46 MOV B,M Move [M] to B
8007 23 INX H Increment HL pair
8008 86 L2 ADD M Add [A] to [M]
8009 D2 INC L1
800A 0D Jump if no carry to L1
800B 80
800C 0C INR C Increment [C]
800D 05 L1 DCR B Decrement [B]
800E C2 INZ L2
800F 08 Jump if nonzero to L2
8010 80
8011 32 STA 8200
8012 00 Store [A] in 8200

MICROPROCESSORS LAB

8013 82

8014 79 MOV A, C Move [C] to A
8015 32 STA 8201 Store [A] in memory
8016 01 location 8201
8017 82

8018 76 HLT Stop program

Result: The program is executed and the results are stored in the memory locations
8200 and 8201.

Input: At 8100 : 03

At 8101 : 02

Output: At 8200 : 06

At 8201 : 00

8.8. 8085 Instructions & Mnemonic Codes

22

Hex mnemonic Hex mnemonic Hex mnemonic Hex mnemonic
CE ACI 8-Bit 3F CMC 2B DCX H 01 LXI B,16-Bit
8F ADC A BF CMPA 3B DCX SP 11 LXI D,16-Bit
88 ADC B B8 CMPB F3 DI 21 LXI H,16-Bit
89 ADC C B9 CMPC FB EI 31 LXI SP,16-Bit
8A ADC D BA CMPD 76 HLT 7F MOV AA

8B ADC E BB CMPE DB IN 8-Bit 78 MOV AB

8C ADC H BC CMPH 3C INR A 79 MOVAC

8D ADC L BD CMP 04 INR B 7A MOV AD

8E ADCM BE CMPM 0C INR C 7B MOV AE

87 ADDA D4 CNC 16-Bit 14 INR D 7C MOV AH

80 ADDB C4 CNZ16-Bit IC INR E 7D MOV AL

MICROPROCESSORS LAB

23

81 ADDC F4 CP 16-Bit 24 INR H 7E. MOV AM
82 ADDD EC CPE 16-Bit 2C INR L 47 MOVBA
83 ADDE FE CPI 8-Bit 34 INR M 40 MOVBB
8 ADDH E4 CPO 16-Bit 03 INX B 41 MOVBC
85 ADDL CC CZ16-Bit 13 INX D 42 MOVBD
86 ADDM 27 DAA 23 INX H 43 MOVBE
C6 ADI 8-Bit 09 DADB 33 INX SP 44 MOVBH
A7 ANAA 19 DADD DA IC 16-Bit 45 MOVBL
A0 ANAB 29 DADH FA M 16-Bit 46 MOV BM
Al ANAC 39 DAD SP C3 JMP 16-Bit 4F MOVCA
A2 ANAD 3D DCR A D2 JINC 16-Bit 48 MOVCB
A3 ANAE 05 DCR B C2 JNC 16-Bit 49 MOVCC
A4 ANAH 0D DCR C F2 JP 16-Bit 4A MOVCD
A5 ANAL 15 DCR D EA JPE 16-Bit | 4B MOV CE
A6 ANAM 1D DCR E E2 JPO 16-Bit | 4C MOV CH
E6 ANA 8-Bit 25 DCR H CA JZ 16-Bit | 4D MOV CL
CD CALL 16-Bit 2D DCR L 3A LDA 16-Bit |4E MOV CM
DC CC 16-Bit 35 DCR M 0A LDAXB 57 MOV DA
FC CM 16-Bit 0B DCX B 1A LDAXD 50 MOV DB
2F CMA 1B DCX D 2A LHLD 16-Bit 51 MOV DC
Hex mnemonic Hex mnemonic Hex mnemonic Hex mnemonic
52 MOV DD 71 MOVMC E5 PUSHH 9E SBB M
53 MOV DE 72 MOVMD F5 PUSHPSW DE SBI 8-Bit
54 MOV DH 73 MOVME 17 RAL 22 SHLD 16-Bit
55 MOVDL 74 MOVMH IF RAR 30 SIM

56 MOV DM 75 MOVML D8 RC F9 SPHL

MICROPROCESSORS LAB

24

SF

58

59

5A

5B

5C

5D

SE

67

60

61

62

63

64

65

66

6F

68

69

6A

6B

6C

6D

6E

77

70

MOV E A

MOV EB

MOV E C

MOV ED

MOV EE

MOV EH

MOV EL

MOV EM

MOV H A

MOV HB

MOVHC

MOV HD

MOV HE

MOV HH

MOV HL

MOV HM

MOV LA

MOV LB

MOVLC

MOV LD

MOV LE

MOV LH

MOV LL

MOVLM

MOV M A

MOV M B

3E MVI AS8-Bit
06 MVI BS&8-Bit
OE MVI CS8-Bit
16 MVI DS8-Bit
IE MOVE 8-Bit
26 MVI HB&8-Bit
2E MVI LS8-Bit
36 MVI M8-Bit
00 NOP

B7 ORA A

B0 ORA B

Bl ORA C

B2 ORA D

B3 ORA E

B4 ORA H

B5 ORA L

B6 ORA M

F6 ORI 8-Bit

D3 OUT 8-Bit

E9 PCHL

Cl POP B

DI POP D

El POP H

F1 POP PSW

C5 PUSHB

D5 PUSHD

C9

20

07

F8

DO

Co

FO

E8

EO

OF

C7

CF

D7

DF

E7

EF

F7

FF

C8

9F

98

99

9A

9B

9C

9D

RIM

RLC

RM

RNC

RNC

RPO

RRC

RST O

RST 1

RST 2

RST 3

RST 4

RST 5

RST 6

RST 7

RZ

SBB A

SBB B

SBB C

SBB D

SBB E

SBB H

SBB L

32

02

12

37

97

90

91

92

93

94

95

96

D6

EB

AF

A8

A9

AA

AB

AC

AD

AE

EE

E3

STA

STAX B

STAX D

STC

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUI

XCHG

XRA

XRA

XRA

XRA

XRA

XRA

XRA

XRA

XRI

XTHL

16-Bit

16-Bit

8-Bit

MICROPROCESSORS LAB

25

I1.

12.
13.

14.

15.

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

Sign in the log register as soon as you enter the lab and strictly observe your lab timings.
Strictly follow the written and verbal instructions given by the teacher / Lab Instructor. If
you do not understand the instructions, the handouts and the procedures, ask the
instructor or teacher.

It is mandatory to come to lab in a formal dress and wear your ID cards.

Do not wear loose-fitting clothing or jewellery in the lab. Rings and necklaces are usual
excellent conductors of electricity.

Mobile phones should be switched off in the lab. Keep bags in the bag rack.

Keep the labs clean at all times, no food and drinks allowed inside the lab.

Intentional misconduct will lead to expulsion from the lab.

Do not insert connectors forcefully into the sockets.

NEVER try to experiment with the power from the wall plug.

. Immediately report dangerous or exceptional conditions to the Lab instructor / teacher:

Equipment that is not working as expected, wires or connectors are broken, the
equipment that smells or “smokes”. If you are not sure what the problem is or what's
going on, switch off the Emergency shutdown.

Never use damaged instruments, wires or connectors. Hand over these parts to the Lab
instructor/Teacher.

Be sure of location of fire extinguishers and first aid kits in the laboratory.

After verification of program output, turn off power supply to the trainer kit. Do not take
any item from the lab without permission.

Observation book and lab record should be carried to each lab. Programs of current lab
session are to be written in Observation book and of previous lab session should be
written in Lab record book. Both the books should be corrected by the faculty in each lab.
Handling of Microprocessor trainer kit: Sensitive electronic circuits and electronic
components have to be handled with great care. The inappropriate handling of electronic
component can damage or destroy the devices. Therefore, always handle the electronic
devices as indicated by the handout, the specifications in the data sheet or other

documentation.

MICROPROCESSORS LAB

Program 1: 8-BIT SUBTRACTION

Aim: To subtract two 8-bit numbers.

Method: The numbers to be subtracted are stored in memory locations. First number is brought
to accumulator and the second number in the memory is subtracted from it. If a carry is
generated, the result stored in the accumulator is complemented and a 1 is added to it. Finally,
the result and carry are stored in memory locations.

Flowchart:

(Y

[Claar Acoumulator
Claar T to stods oamy

hovwa first pummber to Avoc

Subtract [IW] from [Acc]

e

Complament [Acc] & add 1
Incr=m et T

3

S tora [Acc] and [D] in
[
T

"

MICROPROCESSORS LAB

Program 2: 8-BIT DIVISION

Aim: To divide two 8-bit numbers.

Method: The numbers to be divided are stored in memory locations. The dividend is moved to
accumulator. The divisor is subtracted from the accumulator content until a carry is generated.
The number of times this subtraction is done will give the quotient and the remaining value in

the accumulator will give the remainder of division.

Flowchart:

Clemr remister 10
ke=p gquoaoti=nit

Fatch tha divisps to
E and dividend to &

| 1

A=4A-FE

Stoos gootisnt in © i
0 S

| _

[Store remaindsr im

A i masmarne

(Stop |
-

Flowchart:

MICROPROCESSORS LAB

o

L
M= Do b 0 dhack

Ewd

|
Cm g AT D

Dm g ADTFL

Fotme C Lo nnd
nooes ooy fag 1= H

"
Feapey D Spms and

seaew chery flagi= 1

A

< Ia=i?

Aim: To check whether the given number is a palindrome or not.

Program 3: CHECKING WHETHER A NUMBER IS PALINDROME

Method: The number to be checked is stored in a memory location. It is fetched to a register and
the first and last nibbles are separated. The first nibble is rotated left and the carry flag is
checked. The last nibble is rotated right and the carry flag is again checked. If the carry flags of
these two operations do not yield the same value, 00 is stored in memory location indicating that
the number is not a palindrome and the program comes to a halt. But if, they yield the same
result the process is repeated 4 times. If it completes 4 iterations successfully ie. the carry flags
for each nibble in an iteration remain the same, 01 is stored in memory location indicating that
the number is a palindrome.

MICROPROCESSORS LAB

Program 4: SORTING NUMBERS IN ASCENDING ORDER

Aim: To sort 10 numbers stored in consecutive memory locations in ascending order.

Method: Initialize cycle counter, comparison counter with corresponding values and the address
pointer to the location where the data is stored. Move the data pointed by the address pointer to
the accumulator. Compare it with next data. If the accumulator content is less than the next data
then exchange the data. Decrement comparison counter. Repeat the process with the next data
until comparison counter is 0. If the comparison counter is zero then decrement cycle counter

and if it is not zero increment the address pointer and repeat the whole process until cycle
counter is zero.

Flowchart:

- =
pran

l

Initialize Cycle countar,

comparison counter and
Addsess pointer.

& d - -""._

- (L)

v —

o -

| Bring the dsta pointad by
tha addrass pointer to tha
accomulator

l No
Exchanpge data

'

: | I 1

Movenextdata | | Decrement Comperizon |
to _-""_»:‘-_'EE'MITW | | soumiE

Yes

MICROPROCESSORS LAB

MICROPROCESSORS LAB

Program 5: SORTING NUMBERS IN DESCENDING ORDER

Aim: To sort 10 numbers stored in consecutive memory locations in descending order.

Method: Initialize cycle counter, comparison counter with corresponding values and the address
pointer to the location where the data is stored. Move the data pointed by the address pointer to
the accumulator. Compare it with next data. If the accumulator content is larger than the next
data then exchange the data. Decrement comparison counter. Repeat the process with the next
data until comparison counter is 0. If the comparison counter is zero then decrement cycle
counter and if it is not zero increment the address pointer and repeat the whole process until
cycle counter is zero.

Flowchart:

F ‘\.__

\ Pram
Imitialize Cvcls counter
comparison counter and
Address pointer,

* — —— 4 Ay

- L L)

- ' - & T
Bring the dars pointad b
tha address pointar to the
scoumulstor.

.) :
Decrement Comparison
SRR

Movenext data
1) .&::ﬂim':ulat:rr

Yas 3
F i
=l |
= g

MICROPROCESSORS LAB

MICROPROCESSORS LAB

Program 6: 16-BIT ADDITION

Aim: To add two 16 bit numbers.

Method: The numbers to be added are stored in two 16 bit registers. They are added and the
resultant sum and carry are stored in memory locations.

Flowchart:

- T o
Load fnino. ina

1:}_ him-.-_':_mu'

. L
Load 2% 0o in
smother 14 bt register

Increment D
t N

MICROPROCESSORS LAB

Program 7: CONVERTING BCD NUMBER TO BINARY
Aim: To convert a BCD number to a binary number.

Method: The number is ANDed with FO to obtain the first 4 bits. Then it is rotated 4 times left
through carry and the value is stored in a register (say B). The last 4 bits obtained when the BCD
number ANDed with OF is stored in another register (say C). The value in B is multiplied by 10
and then it is added with the contents of C to obtain the equivalent binary number. The carry, if
any is also stored in some registers.

Flowchart:

.
St

i

| A= BOD soamnbee !

-
Ewmg

|

| B - pA)AND FO

: L
E o= fA] mnd OF

1

Foums [B] 4 temmeas
1=l ihkroogh o |

-
Ay o= TEY = 10— [C]

-
Wem T e o
18 STy
m ® i
-

T
| IeCrarsqast E

= T - ']

>

Seore [E] and [A] in

MICROPROCESSORS LAB

Program 8: CONVERTING BINARY NUMBER TO BCD

Aim: To convert a binary number to BCD number.

Method: The binary number is stored in a register. Count the number of 100s and store it in a
register say A. Count the number of 10s in it and store it in a register say B. Subtract all 100s,
10s from the original binary number and the resulting value is stored in another register. These 3
values stored will give the equivalent BCD number.

Flowchart:

(s)
A=Bi.nxr}number
l

B=No: 0of100sin[A]

C=No: of 10sin [A]

l

A=A-(100*B)-(10=0C

l

Store A B.Cin
mamory,

1
o

10

MICROPROCESSORS LAB

11

Program 9: ADDITION OF SERIES OF NUMBERS
Aim: To add ten 8 bit numbers.

Method: Move first data to accumulator. Initialize count register. Add the next data with data in
the accumulator. If there is a carry increments carry register. Decrement the count register. If it is
zero store the result. Else fetch the next data and add with value in the accumulator. Repeat until
carry register is zero.

Flowchart:

* Clsar Ragistar to
Save Sum

* Clear Ragister to
Save Carry

* Sat up Countar

= Setup Index

L

Sum=5um + Indax

Index =Indax—+1

Counter=Counter- 1

MICROPROCESSORS LAB

12

Display

or Save

{ Stop]

MICROPROCESSORS LAB

Program 10: 8-BIT MULTIPLICATION

Aim: To multiply two 8 bit numbers.

Method: Store one of the data in a register (say C register). Move the second data to
accumulator. Move the accumulator content to another register (say B register). Set the data in
the C register as a counter. Add the data in B register to the content of accumulator. Decrement
the value in C register. Repeat the addition until the value in the counter register C is zero. The
final value in the accumulator will be the product of the two values.

Flowchart:

C s D
l

Clear Registers
to Store Data

|

hiowe Data to
Regsisters

.

Set One Register
Content as
Counter

-
Add the other
Ragister Value

to Itsalf

®

-

Dracrament

Countes

I Store Result]

|

-

{ Stop _/:l

13

MICROPROCESSORS LAB

Program 11: LARGEST NUMBER IN A LIST
Aim: To find out the largest of ten 8 bit numbers.

Method: The numbers are stored in consecutive memory locations. The counter register is
initialized with OA and the address pointer points to the first number. The first number is moved
to a register say B. The address pointer is incremented and counter register is decremented and
the next number is fetched to accumulator. If the content of accumulator is greater than that in B,
it is loaded in B. The counter register is decremented and the process is repeated until the counter
register reaches to 0. The final value in B will give the largest number in the series.

Flowchart:

e

!

‘ Initialize addreass

pointar

!

C=0A
B = No.pointad bwv

address pointer
&) -

Increment
address pointer

L

Deacrament

counter register

14

MICROPROCESSORS LAB

=

o' [

Yoe ma pacird Yy
BAIEL DR = A

15

I

Cerpasra [A] with
)

o

|

Yas

Btore [B] o memory

Aeove[Elio A

MICROPROCESSORS LAB

Program 12: DISPLAYING TEXT ON LCD
Aim: To display text on LCD using 8085 and 8255.

Apparatus required:
8085 Microprocessor trainer kit, LCD interface board, Regulated Power supply.

Description: LCD interface is connected over J2 of the trainer. When the trainer kit in KEYBOARD
or SERIAL mode it scans system key codes.

8255 port addresses: Control word register-43H

Flowchart:
I ETART |
I o o — 1
l irstishize LCD ‘
RS=d) l ES=]
Command Eepiter "- -""--h___ Diats Feguiter
Check kS
hiask Lowwar 4 Bits E 1
[Mask Lower 4 Bits]
I Send Higher Nibble to LCOPORT ‘ I Send Higher Nibbis to LCDPORT |
!
| Send Enabile Signalto LCD]] Send Enable Signalto LCD J
; P I — sk Hi 4 By
I Mask Highor 4 Bits -| [Ohec 4 Cis
! [Send Lower Nibbés to LCOPORT]
Send Lower bbbl o LCOCPORT I
¢ [Send Enable Signalto LCD J
‘ Sand Enable Signal o LCD I
(sor) " CheckNul =
—— ol e Characte
 stop)

16

MICROPROCESSORS LAB

Program 13: DISPLAYING TEXT ON 7 SEGMENT
Aim: To display text on seven segment display using 8085 and 8255.

Apparatus required:
8085 Microprocessor trainer kit, seven segment display interface board, Regulated Power

supply.

Description: Seven segment display interface is connected over J2 of the trainer. When the trainer kit
in KEYBOARD or SERIAL mode scrolling and flashing of display can be observed.

(Start)
) |
+
l PMake F’CG High I

:

[Call delay I

:

I Make PC, Low l

:

I Call delay l
3
2

C e~)

17

MICROPROCESSORS LAB

Program 14: To generate AP series of n numbers

Algorithm —

Memory Address(offset)— > | 500 501 502

Memory Address(offset) — > 600 601 602 603

18

1.

Store 500 to SI and 600 to DI Load data from offset 500 to register CL and set
register CH to 00 (for count).

2. Increase the value of SI by 1.

3. Load first number(value) from next offset (i.e 501) to register AL.
4. Store the value of register AL to memory offset DI.

5. Increase DI by 1.

0.
7
8
9

Decrease the CL by 1.

. Load second number(common difference) from next offset (i.e 502) to register BL.
. Add register AL and BL.

. Store the result (value of register AL) to memory offset DI.

10.Increase the value of SI by 1.

11.Loop above 3 till register CX gets 0.

Input Data C— > 04 02 03

QOutput Data — > 02 05 08 0B

MICROPROCESSORS LAB

19

Program 15: 8085 Program to compute LCM

In this program we are reading the data from 8000H and 8001H. By loading the
number, we are storing it at C register, and clear the B register. The second number
is loaded into Accumulator. Set DE as the 2's complement of BCregister. This DE is

used to subtract BC from HL pair.

The method is like this:let us say the numbers are 25 and 15. When we divide the
first number by second, and then if there is no remainder, then the first number is
the LCM. But for this case the remainder is present. Then we will check the next
multiple of 25 to check the divisibility. When the remainder becomes 0, the program

terminates and the result is stored.

C = Load the first number from memory
B =00H

ment of BC
0oH

HL = HL + BC

Store HL to memory

HL=HL + DE

HL = 0000H Store HL to memory

Store HL to memory

MICROPROCESSORS LAB

20

